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We analyzed the origin and evolution of snake venom toxin families represented in both viperid and elapid snakes by
means of phylogenetic analysis of the amino acid sequences of the toxins and related nonvenom proteins. Out of eight
toxin families analyzed, five provided clear evidence of recruitment into the snake venom proteome before the
diversification of the advanced snakes (Kunitz-type protease inhibitors, CRISP toxins, galactose-binding lectins, M12B
peptidases, nerve growth factor toxins), and one was equivocal (cystatin toxins). In two others (phospholipase A, and
natriuretic toxins), the nonmonophyly of venom toxins demonstrates that presence of these proteins in elapids and
viperids results from independent recruitment events. The ANP/BNP natriuretic toxins are likely to be basal, whereas the
CNP/BPP toxins are Viperidae only. Similarly, the lectins were recruited twice. In contrast to the basal recruitment of the
galactose-binding lectins, the C-type lectins were shown to be Viperidae only, with the a-chains and B-chains resulting
from an early duplication event. These results provide strong additional evidence that venom evolved once, at the base of
the advanced snake radiation, rather than multiple times in different lineages, with these toxins also present in the venoms
of the “colubrid” snake families. Moreover, they provide a first insight into the composition of the earliest ophidian
venoms and point the way toward a research program that could elucidate the functional context of the evolution of the

snake venom proteome.

Introduction

The evolution of the venomous function of snakes and
the diversification of their toxins has been of tremendous
research interest and considerable debate. The advanced
snakes (superfamily Colubroidea) make up over 80% of the
approximately 2,900 species of snake currently described
and contain all the known venomous forms (Greene 1997,
Vidal 2002). The origin and evolution of venom-secreting
glands and venom toxins has been a subject of much
speculation. At present, the evidence-based majority view is
that venom-secreting glands evolved at the base of the
colubroid radiation, with extensive subsequent “evolution-
ary tinkering” (Vidal 2002), including the multiple
evolution of front-fanged venom delivery systems in the
families Viperidae, Elapidae, and Atractaspididae (Un-
derwood 1967; Underwood and Kochva 1993; Vidal 2002)
and secondary loss in some other lineages. The remaining
majority of the Colubroidea lack front fangs, but most
lineages have a venom gland (formerly termed Duvernoy’s
gland, but see Fry et al. [2003¢] for a discussion of why this
term has been abandoned) and may or may not have
differentiated posterior maxillary teeth to facilitate venom
inoculation, including advanced, highly mobile and
efficient rear fangs evolving at least once. These snakes
have traditionally been lumped into the family Colubridae,
but multiple studies of Colubroid phylogeny have shown
this family to be paraphyletic, at least with respect to the
Atractaspididae and Elapidae (fig. 1) (Underwood 1967;
Slowinski and Lawson 2002; Vidal 2002; Vidal and Hedges
2002; Kelly, Barker, and Villet 2003). However, for
convenience, we retain the term “colubrid” as an informal
designation for the colubroid snakes lacking front-fanged
venom delivery systems.

Key words: venom, evolution, multigene family, Elapidae, Viper-
idae, colubrid, snake.

E-mail: bgf@unimelb.edu.au.

Mol. Biol. Evol. 21(5):870-883. 2004
DOI:10.1093/molbev/msh091
Advance Access publication March 10, 2004

Evidence for the origin of venom-secreting glands at
the base of the colubroid radiation comes from comparative
morphology and the demonstrated homology of venom-
secreting glands of different colubroid lineages (Kochva
1963, 1965, 1978; Underwood and Kochva 1993; Un-
derwood 1997; Jackson 2003) as well as the distribution of
these glands across the full spectrum of “colubrid” lineages
(Vidal 2002). Nonetheless, some authors maintain the view
that the venom-secreting glands of different lineages of
“colubrid” snakes may have evolved independently on
multiple occasions (Chiszar and Smith 2002).

One source of evidence that has been largely neglected
in discussions of the evolution of venom and venom
delivery systems in snakes are the venoms themselves
(Jackson 2003). The toxins found in snake venoms evolve
from recruitment events by which a body protein is recruited
into the chemical arsenal of the snake. The toxins often
undergo significant variations in sequence and structure, yet
typically retain the molecular scaffold of the ancestral
protein (Fry et al. 20030). Phylogenetic analyses of toxin
sequences can reconstruct the evolutionary history of toxin
gene families, and, in conjunction with an organismal
phylogeny, this allows the recruitment and diversification
of the toxins to be related to the phylogeny of the snakes.

The previous lack of use of toxin data may be partly
because of the fact that, until very recently (Yamazaki et al.
2002; Fry et al. 2003a), the only toxins that have been
sequenced were from the front-fanged families of medical
importance (Elapidae, Viperidae, and Atractaspididae),
leaving the majority of colubroid lineages unstudied.
However, the first full sequences of ‘“colubrid” toxins
proved revealing. We previously isolated and characterized
a neurotoxic 3FTx (three-finger toxin), a toxin family
previously believed to be unique to the Elapidae (Fry et al.
2003b), from the colubrine Coelognathus radiatus, and
demonstrated that it was phylogenetically rooted within the
elapid 3FTx family (Fry et al. 2003a). This finding
suggested that the 3FTx family was recruited into the
chemical arsenal of snakes before the split between the
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FiG. 1.—Phylogeny of the major families of advanced snakes
(Colubroidea) discussed in this study (Vidal and Hedges 2002). Only
major lineages and those mentioned in text are shown. The timing of the
recruitment of 3FTx into the snake venom proteome, based on the
analyses of Fry et al. (20034, 2003c¢), is also shown.

elapid and colubrine lineages (fig. 1). However, the 3FTx
family probably does not represent a basal recruitment, as
these toxins are lacking in the venoms of the Viperidae, the
most basal colubroid lineage (fig. 1) (Fry et al. 2003¢). The
recruitment events leading to PLA, toxins (phospholipase
A»,) being present in both Elapidae and Viperidae venoms
are clearly independent, with the Elapidae toxins belong to
the “pancreatic-type” (group I) PLA, toxins, whereas the
Viperidae toxins belong to the “synovial-type” (group II)
PLA, toxins (Heinrikson, Krueger, and Keim 1977). In
view of the fact that the PLA, of viperids and elapids result
from separate recruitment events, this leaves open the
possibility that vipers and elapids plus “colubrids” may
have evolved venom independently.

The aim of this paper is to use the phylogenetic
analysis of toxin amino acid sequences to understand the
pattern of recruitment of toxin families into the snake
venom proteome. In particular, we aim to test whether toxin
families represented in both vipers and elapids go back to
a single recruitment event before the radiation of the
Colubroidea or to independent recruitment events after the
lineage split between the two families.

Our approach is based on the fundamental prediction
that the genes of a given toxin family should only be
monophyletic in the clade in which the family was first
recruited into the venom proteome but nonmonophyletic in
any subclade of that clade, as their coalescence time would
predate the diversification of the subclade. The interpre-
tations that can be derived from different patterns of toxin
gene phylogeny are shown in figure 2. Because vipers and
elapids are representatives of the two most distantly related
lineages among the Colubroidea (fig. 1) (Slowinski and
Lawson 2002; Vidal and Hedges 2002; Kelly, Barker, and
Villet 2003), with the possible exception of the Pareatinae
or Xenodermatinae, our results have implications for the
pattern of presence/absence of toxins in other advanced
snake lineages. Where the presence of a given toxin family
in the elapids and vipers goes back to a single recruitment
event, the presence of that toxin family in other colubroid
lineages is likely. However, this is not necessarily the case
if the presence of the toxin family in vipers and elapids is
the result of independent recruitment events.
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We examined the molecular phylogeny and evolution
of toxin classes shared between the Viperidae, the most
basal group of colubroid snakes, and the Elapidae, one of
the most derived groups of colubroid snakes, which are
rooted among other colubroids in the other basal branch of
the phylogeny of the Colubroidea (Vidal and Hedges 2002).
Molecular scaffold types examined were BPTI/Kunitz-type
proteinase inhibitor toxins (BPTI = bovine pancreatic
trypsin inhibitor), CRISP toxins (cysteine-rich secretory
proteins), cystatin toxins, C-type lectin toxins and GBL
toxins (galactose-binding lectins), M12B peptidases, natri-
uretic toxins, NGF (nerve growth factor) toxins, and PLA,
(phospholipase A,) toxins. We did not examine toxin types
for which sequences have been reported to date from only
one family.

Materials and Methods

To minimize confusion, all proteins sequences are
referred to by their NCBI accession numbers (http://
www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein).
Sequences were aligned using the program ClustalX
(Thompson et al. 1997), followed by visual inspection for
errors. In the case of the BPTI/Kunitz protease inhibitors, as
these protein domains have been incorporated into longer
preproteins, alignments were trimmed on either side of the
domain. Because of the large number of sequences in each
data set, we conducted our phylogenetic analyses in two
steps. For each data set, phylogenetic trees containing all
sequenced proteins were initially reconstructed using the
maximum-parsimony (MP) and Neighbor-Joining (Saitou
and Nei 1987) methods. MP heuristic searches were
conducted using the program PAUP* version 4.0b10
(Swofford 2002) and random stepwise taxon addition with
TBR branch swapping and the PROTPARS weighting
scheme (Felsenstein 2001), which takes into account the
number of changes required at the nucleotide level to
substitute one amino acid for another. Number of sequences,
alignment length (including gaps), and parsimony-infor-
mative sites were as follows: BPTI/Kunitz —198 se-
quences, 182 characters, 142 of which were parsimony
informative; CRISP—57 sequences, 336 characters, 292
of which were parsimony informative; Lectins—104 se-
quences, 267 characters, 192 of which were parsimony
informative; Cystatin—30 sequences, 174 characters, 143
of which were parsimony informative; M12B—238 se-
quences, 897 characters, 792 of which were parsimony
informative; nerve growth factor—174 sequences, 352
characters, 242 of which were parsimony—informative;
PLA,—127 sequences, 458 characters, 265 of which were
parsimony informative; natriuretic peptides—83 sequences,
348 characters, 193 of which were parsimony informative.

Neighbor-Joining analysis was carried out using the
program MEGA version 2.1 (Kumar et al. 2001), using
Poisson-corrected distances. In this manner, we identified
the clades that contained the venom proteins. Once such
clades were identified, data sets containing representatives
of nonvenom proteins, with particular emphasis on
representing clades close to the venom proteins (except
cystatin, natriuretic peptide, and nerve growth factor data
sets, which included all nonvenom sequences), and all of
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Fi6. 2.—Schematic approach to interpreting patterns of recruitments of protein families into the venom proteome from gene trees. Double-bars

represent recruitment events.

the venom proteins (except for PLA, and the a-chains
and PB-chains of the C-type lectins: because of the
extremely large number of venom toxin sequences,
representatives of the full breadth of gene phylogenetic
diversity were selected) were analyzed using Bayesian
inference implemented on MrBayes version 3.0b4
(Huelsenbeck and Ronquist 2001; Ronquist and Huel-
senbeck, in press). The method uses Markov chain Monte
Carlo methods to generate posterior probabilities for each
clade represented in the tree. The analysis was performed
by running a minimum of 1 X 10° generations in four
chains and saving every 100th tree. The log-likelihood
score of each saved tree was plotted against the number
of generations to establish the point at which the log-
likelihood scores of the analysis reached their asymptote,
and the posterior probabilities for clades established by
constructing a majority rule consensus tree for all trees
generated after the completion of the burn-in phase.
Alignments can be obtained from the authors.

Results

The results of the phylogenetic analyses are summa-
rized in table 1. Of the eight toxin families analyzed, five
correspond to pattern (ii) of figure 2, in that the toxin
proteins are monophyletic to the exclusion of nonvenom
proteins, but viperid and elapid toxins are not reciprocally
monophyletic. These are the BPTI-Kunitz (fig. 3), CRISP
(fig. 4), M12B (fig. 5), and nerve growth factor (fig. 6)
families and the GBL toxins. On the other hand, in PLA,
(fig. 7) and natriuretic peptides (fig. 8), the elapid and

viperid toxins originate from independent recruitment
events (pattern [i] in figure 2). The PLA, toxins in elapids
were more similar to the “synovial-type” body PLA,,
whereas the viper venom PLA, were more similar to the
“pancreatic-type” body PLA, sequences (group I and
group II PLA,, respectively [Heinrikson, Krueger, and
Keim 1977]). The natriuretic toxins in elapid venoms were
rooted deeply within the ANP/BNP lineage, whereas the
viper natriuretic toxins were clearly evolved from within
the CNP lineage (fig. 8).

The cystatins correspond to pattern (iii) of figure 2.
Only single elapid and viperid sequences are available (fig.
9), so the reciprocal monophyly of the toxins of the two
families cannot be tested. The observed toxin phylogeny is,
thus, consistent with both single and multiple recruitments
of these proteins into the venom proteome. However, the
low distance values between the two sequences are
indicative of a single recruitment event. Finally, the lectin
toxins contained two venom clades, indicating that this
protein family was recruited twice into the snake proteome
(fig. 10). In the GBL (galactose-binding lectins) toxin clade,
viper and elapid toxins were monophyletic relative to all
other sequences but paraphylectic relative to each other,
thus, consistent with a single recruitment event at the base
of the Colubroidea tree (pattern [ii]). The a-chains and -
chains of the C-type lectins (found only in viper venoms)
form a monophyletic gene clade relative to all other
sequences but are also reciprocally monophylectic relative
to each other, thus, appearing to have arisen from a single
recruitment event postdating the Viperidae split off from the
rest of the Colubroidea tree, yet with a very early gene
duplication to form the a-chains and B-chains.



Table 1
Summary of the Results of the Phylogenetic Analyses
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Monophyly of

Toxin Family Venom Proteins

Reciprocal Monophyly of Viperid
and Elapid Toxins

Interpretation

CRISP Yes
supported

Cystatin Yes

Kunitz Yes
supported

Lectins Yes/No

in vipers only

M12B Yes
supported

Natriuretic peptides No

Elapid toxins polyphyletic, strongly

Unresolved —only one sequence each

Elapid toxins paraphyletic, strongly

Within galactose-binding lectins, elapid
toxins paraphyletic, strongly supported;
C-type lectins o-chains and B-chains

Viperid toxins paraphyletic, strongly

Yes, although viper toxins are present in
two unrelated types; the viper-only
CNP-toxins and a second that may be

Single early recruitment

Equivocal (although the low distance values
are consistent with a single early
recruitment event)

Single early recruitment

Galactose-binding lectins; single early
recruitment event; C-type lectins o-chains
and B-chains resulting from one late,
independent recruitment in vipers with
rapid gene duplication to form o-chains
and B-chains

Single early recruitment

One independent recruitment (viper CNP
toxins) and an early ANP/BNP toxin
recruitment.

homologous to the ANP/BNP-toxins
found in elapid venoms

Nerve growth factor
supported

Phospholipase A, No Yes

Viperid toxins paraphyletic, strongly

Single early recruitment

Independent recruitments

Discussion

Our results provide new insights into the origin of
venom in snakes by demonstrating that several toxin
families were recruited into the venom apparatus of snakes
before the diversification of extant colubroid snake lineages.

Origin and Recruitment of Toxin Families

Of the eight toxin families analyzed, five (Kunitz-type
protease inhibitors, CRISP toxins, GBL toxins, M12B
peptidases, and NGF toxins) correspond unequivocally to
pattern (ii) of figure 2, which allows the rejection of the
possibility that these proteins were recruited into the snake
venom proteome after the lineage split between the vipers
and the elapids (fig.11). In all, the lack of reciprocal
monophyly of the viperid and elapid toxins is supported by
high posterior probabilities in the Bayesian analyses. The
low distance values between the sequences in the cystatin
toxin gene family is also suggestive of a single early
recruitment event. However, the reciprocal monophyly of
viperid and elapid toxins, arising as a consequence of only
one sequence being available from each lineage, does not
allow rejection of the alternative of independent later
recruitments. Additional sequences would be revealing.

Three of the toxin families analyzed, the lectin toxins,
PLA,, and the natriuretic peptides, are clearly the result of
two independent recruitment events. In the case of the PLA,
toxins, this confirms existing information on the evolution
of the toxins independently in elapid (group I PLA,) and
viper venoms (group II PLA,) (Heinrikson, Krueger, and
Keim 1977; Dufton and Hider 1983) and also serves as
a useful control for the possibility that apparent monophyly
of all toxins within a protein family may be a result of
homoplaseous convergence because of similar function

rather than common ancestry. The example of the PLA,
toxins also illustrates the requirement for a toxin phylogeny
to infer a single recruitment. Their widespread presence in
snake venoms had been interpreted as homologous across
all colubroids (e.g., Kochva 1987; Vidal 2002), but
phylogenetic analyses show that this is actually the result
of two independent recruitment events.

The lectin protein family was recruited once at the base
of the Colubroidae tree (GBL toxins) and again in the
Viperidae lineage subsesquent to its split from the rest of the
advanced snakes (C-type lectins), with the vipers, thus,
containing both C-type lectins as well as GBL, whereas all
other lineages contain only GBL (fig. 10). In contrast, the
actual points of recruitment of the group I PLA, and
natriuretic toxin families remain unknown. Group I PLA,
toxins have so far only been characterized and sequenced
from elapid venoms. However, although there are as yet no
PLA, toxin sequences from “colubrid” venoms, corre-
sponding molecular masses were found in most “colubrid”
venoms examined by mass spectrometry, including the
basal Homalopsinae venoms (Fry et al. 2003¢). This makes
it likely that the group I PLA, toxins were recruited after the
divergence of the vipers but before the divergence by other
snake families, as is the case of the 3FTx family (Fry et al.
2003a, 2003¢). However, until PLA, toxins from some of
the “colubrid” lineages are adequately characterized and
sequenced, the possibility of further independent recruit-
ments cannot be excluded.

The snake natriuretic toxins were shown to be of two
types (fig. 8). The sole elapid natriuretic toxin for which
a full-length gene sequence was available (Ho et al. 1997)
aligned within the ANP/BNP natriuretic peptide lineage,
whreas the Viperidae natriuretic toxins aligned with the
CNP natriuretic peptides (fig. 8). The sequences of the viper
CNP natriuretic toxins are highly conserved, so much so
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FiG. 3.—Molecular phylogenetic analysis of the BPTI/Kunitz-type proteinase inhibitor domain-containing proteins. (A) Unrooted maximum-
parsimony network with representative toxin and nontoxin sequences labeled and (B) outgroup-rooted Bayesian analysis of all toxin sequences and
representative nontoxin sequences. To minimize confusion, all proteins sequences are referred to by their NCBI accession numbers (http://

www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein).

that the natriuretic toxin sequence from the venom gland of
Bothrops jararaca (1580720 [Murayama et al. 1997]) is
virtually identical to the natriuretic peptide gene transcript
from the brain of the same species (Hayashi et al. 2003).
Because we included only whole protein sequences in our
phylogenetic analyses, we did not analyze partial sequences
of divergent natriuretic toxins such as a-lebetin from the
viper Macrovipera lebetina (Barbouche et al. 1996) and
several toxins from the venoms of Australian elapids
(32363239, 32363242, and 32363245 [Fry et al. 2002]), as
only the final, highly processed short peptide sequences of

these toxins are known. However, all these toxins have the
C-terminal extension characteristic of ANP/BNP natriuretic
peptides, in contrast to the CNP natriuretic peptides, which
terminate with the second cysteine. Thus, the ANP/BNP
natriuretic toxins may be another ancient recruitment at the
base of the Colubroidea tree, whereas the CNP natriuretic
toxins are an independent recruitment that occurred after the
vipers split off from the remainder of the advanced snakes,
a scenario similar to that which also clearly occurred with
the lectin toxins. However, a full-length transcript of o-
lebetin (or a similar viper toxin) and additional elapid toxin
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proteins sequences are referred to by their NCBI accession numbers (http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein).

sequences would be necessary to confirm the homology of
the ANP/BNP toxins and the consequent basal recruitment.

The CRISP toxins from the snake and Helodermatid
lizard venoms (fig. 4) represent independent recruitments of
CRISP proteins for use as toxins. The venom-secreting
structures in advanced snakes and Heloderma are different,
nonhomologous structures (supralabial and infralabial
glands, respectively), and the last common ancestor of
Heloderma and advanced snakes would have been a basal
varanoid (Forstner, Davis, and Arévalo 1995; Lee 1997) or
even a basal scleroglossan (Rieppel et al. 2003) lizard
devoid of a venomous function. However, it is interesting
that, despite being the result of an independent recruitment
event, helothermine represents the sister group to the snake
CRISP proteins. Clearly, helothermine and snake venom
CRISPs were recruited from closely related body proteins.
This illustrates why phylogenetic patterns corresponding
to pattern (iii) of figure 2, as found in the cystatin toxins

(fig. 9), cannot be taken as evidence of a single recruit-
ment event, despite the low distance levels between the
toxin sequences relative to the nontoxin sequences, which
support the most parsimonious conclusion of a single
recruitment.

Assembly of the Snake Venom Proteome

The pattern of recruitment of venom protein families
revealed in this study shows that the last common ancestor
of the extant colubroid snake radiation already had
a complex venom containing at least five and possibly six
or more of the toxin gene families shared by vipers and
elapids today. Moreover, because some toxin lineages
may have been lost in either vipers or elapids, this pri-
mitive colubroid may have had additional toxin families
represented in its venom. Additional toxin families were
recruited into the chemical arsenal soon after the basal
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F1G. 5.—Molecular phylogenetic analysis of M12B peptidases. (A) Unrooted maximum-parsimony network with representative toxin and nontoxin
sequences labeled and (B) outgroup-rooted Bayesian analysis of representative toxin and nontoxin sequences. To minimize confusion, all proteins
sequences are referred to by their NCBI accession numbers (http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein).

lineage split between vipers and the remaining colubroids.
The 3FTx family was recruited immediately after the vipers
split from the remaining colubroid lineages (Fry et al.
2003a, 2003c¢) and the pancreatic-type (group I) PLA,
toxins appear to have been recruited at approximately the
same time, and both appear to be widespread across most
colubroid lineages.

A number of other toxin families are presently known
only from either the atractaspidids, the elapids, or the
viperids and may have been recruited into the venom
proteome later during the evolution of these lineages. The
sarafotoxins appear to be unique to the Atractaspididae,
having been isolated thus far from only Atractaspis species
(e.g., Kloog et al. 1988). Toxin molecular scaffolds
sequenced only from Elapidae venoms include acetylcho-

linesterase, cobra venom factor, factor Xa prothrombin—
activating toxins, factor V toxins, prokinecitin-like pep-
tides, wapins, and toxins containing the SPRY domain.
Current Viperidae-only toxins include myotoxic peptides,
S1 peptidases, vascular endothelial growth factor-like
toxins, and waglerins. Although the full transcriptome of
an elapid venom gland has not been determined, extensive
cloning of a viper cDNA library revealed at least one
conclusively new viper toxin but did not reveal any
additional toxin types shared with elapid venoms (Jun-
queira-de-Azevedo and Ho 2002). L-amino oxidase activity
has been reported widely from both Elapidae and Viperidae
venoms, but, to date, only full-length Viperidae sequences
have been reported (e.g., 5565692 from Crotalus atrox). A
fragment from Ophiophagus hannah (6093637) entered as
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F16. 6.—Molecular phylogenetic analysis of nerve growth factors. (A) Unrooted maximum-parsimony network and (B) outgroup-rooted Bayesian
analysis of all toxin sequences and representative nontoxin sequences. To minimize confusion, all proteins sequences are referred to by their NCBI
accession numbers (http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein).

a L-amino oxidase displayed homology to a Viperidae
fragment (1085231 from Calloselasma rhodostoma), thus
indicating that this toxin type is yet another basal
recruitment.

The results of this study allow a number of inferences
on the composition of the hitherto largely unstudied bulk of
“colubrid” venoms. The fact that five to eight toxin gene
families were recruited before the basal divergence of the
colubroids suggests that they ought to be present in the
venoms of most other colubroid clades as well. Because of
the almost complete lack of well-characterized “colubrid”
toxins, there is little in the way of firm, sequence-confirmed

evidence to test this hypothesis at present. However,
although we only included complete protein sequences in
our phylogenetic analysis, the available partial CRISP toxin
sequences from several “colubrid” lineages confirm the
ubiquity of this toxin type in Colubroidea venoms (Hill and
Mackessy 2000; Fry et al. 2003c¢), and, similarly, the partial
sequence of the potently prothrombin activating M12B
toxin from the colubrine Dispholidus typus (Kamiguti et al.
2000) suggests the widespread presence of the M12B
peptidases, including the disintegrin domain, within the
Colubroidea, as would be predicted from a basal re-
cruitment of these proteins.
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F1G. 7.—Molecular phylogenetic analysis of PLA,. (A) Unrooted maximum-parsimony network with representative toxin and nontoxin sequences
labeled and (B) outgroup-rooted Bayesian analysis of representative toxin and nontoxin sequences. To minimize confusion, all proteins sequences are
referred to by their NCBI accession numbers (http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein).

In view of the close phylogenetic relationship between
some “colubrid” lineages and the elapids, it is possible that
other toxin classes currently believed unique to the Elapidae
may eventually be found in some “colubrid” lineages, as
has already happened with the 3FTx (Fry et al. 2003a,
2003c¢). This would indicate that they were recruited earlier
in Colubroid history. On the other hand, based on our
understanding of the phylogeny of the Colubroidea, it is
unlikely that any of the toxins currently known only from
the vipers and not from the elapids will be found in the
“colubrids.”

Although a significant number of snake venom toxin
types are currently known, the presence of additional, novel
toxin groups in many colubroid clades is likely. The full
transcriptome of a viper cDNA library revealed at least one
conclusively new viper toxin (Junqueira-de-Azevedo and
Ho 2002). This reinforces the fact that, despite the status of
the venom apparatus as an ancestral character of all
Colubroidea and the basal recruitment of several toxin
types, new toxin types continue to be recruited indepen-
dently within the lineages. Consequently, although the
venoms of the many almost entirely unexplored “colubrid”
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Fic. 8.—Molecular phylogenetic analysis of natriuretic peptides. (A) Unrooted maximum-parsimony network with representative toxin and
nontoxin sequences labeled and (B) outgroup rooted Bayesian analysis of all toxin sequences and representative nontoxin sequences. To minimize
confusion, all proteins sequences are referred to by their NCBI accession numbers (http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein).
Protobothrops flavoviridis and Trimeresurus gramineus sequences from Higuchi et al. 1999.

lineages can confidently be predicted to contain some of the
more widespread toxin families, it also appears extremely
likely that that many of the major lineages will be found to
contain multiple, hitherto unknown, novel toxin families,
some of which may be of considerable biomedical research
interest.

Origin and Evolution of Venom in Snakes

Whereas morphological analyses (Underwood and
Kochva 1993; Underwood 1997; Jackson 2003) and
analyses of advanced snake phylogeny (Gravlund 2001;

Slowinski and Lawson 2002; Vidal 2002; Vidal and
Hedges 2002; Kelly, Barker, and Villet 2003) have
provided extensive evidence for the homology of the
venom-secreting glands in all advanced snakes, much less
was known about how the biochemical arsenal of snakes
was assembled in the course of evolution. Our analyses
show that many of the toxin gene families found in today’s
snake venoms were recruited into the venom proteome very
early in the evolution of advanced snakes, before their
major radiation (fig. 11), and that their presence in the
venoms of multiple snake lineages is, thus, homologous.
The homology of multiple venom families across the
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FI1G. 9.—Molecular phylogenetic analysis of cystatins. (A) Unrooted maximum-parsimony network with all toxin and nontoxin sequences labeled
and (B) outgroup rooted Bayesian analysis of all toxin and nontoxin sequences. To minimize confusion, all proteins sequences are referred to by their
NCBI accession numbers (http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein).

venom glands of the most basally split lineages of
colubroid snake represents strong additional evidence for
the homology of the venom glands across the Colubroidea.
This also reinforces the point that the distinction between
“colubrid” Duvernoy’s gland and the venom glands of the
three front-fanged snake radiations is evolutionarily mis-
leading (Fry et al. 2003c¢).

Our study has, thus, provided new insights into the
evolutionary assembly of the complex and sophisticated
biochemical arsenal of snakes and provided a partial insight
into the composition of the earliest snake venoms.
However, much remains to be learned about the origin of
venom in snakes and, particularly, its functional context.
The complexity of the earliest snake venoms demonstrated
here suggests that the function of these early venoms may
have been similar to that of modern “colubrid” venoms.
Clearly, venoms evolved into complex and sophisticated

secretions soon after the initial evolution of serous supra-
labial glands at the base of the colubroid radiation (Vidal
2002). However, many questions remain unanswered. For
instance, were additional protein families recruited ran-
domly into the snake venom proteome in the course of
evolution, or were most families recruited early, followed
by relative stasis later? Was the evolution of more
specialized venom delivery systems associated with in-
creased recruitment of new toxin gene families? Similarly,
did the development of heat-seeking pits in the Viperidae
also drive additional recruitment events? More information
is needed on structure-function relationships in the almost
totally neglected “colubrid” venoms. These may eventually
allow inferences on the activities of the earliest snake
venom toxins and venoms, and may provide new insights
on their function and use. For example, the isolation and
characterization from ‘colubrids’ of 3FTx revealed the
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Fic. 10.—Molecular phylogenetic analysis of lectins. (A) Unrooted maximum-parsimony network with representative toxin and nontoxin
sequences labeled and (B) outgroup rooted Bayesian analysis of all galactose-binding lectin toxin sequences and representative C-type lectin toxin
sequence and nontoxin sequences. To minimize confusion, all proteins sequences are referred to by their NCBI accession numbers (http://
www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein). Micrurus corallinus sequence from Ho et al. (1995).

ancestral 10-cysteine framework, as well as demonstrating
that o--neurotoxic activity was the basal activity of this toxin
type (Fry et al. 2003a, 20035, 2003c).

Resolution of the many outstanding questions will
require evidence from a variety of sources. In particular,
additional studies of “colubrid” venoms, particularly the
documentation and characterization of the different toxin
families by sequencing in transcriptome studies (Jun-
queira-de-Azevedo and Ho 2002), so far lacking even for
the medically important elapids, are required to provide
further insights into the diversity of toxin families present

in the colubroid radiation. Additionally, we remain short of
information on the biological role and function of venom
in modern “colubrids,” another topic that has been
neglected by all but a few studies (Rodriguez-Robles and
Thomas 1992; Hayes et al. 1992; Salomao and Laporta-
Ferreira 1994). More such studies may provide further
insights into the possible uses of relatively complex
venoms coupled with “colubrid”-type venom delivery
systems, which surely characterized the earliest colubroids.

In conclusion, we hope that the results of this study
will stimulate more interest in the venoms of the hitherto



882 Fry and Wiister

3FTx Group |

PLA,?

Elapidae

BPTI-Kunitz Atractaspididae

CRISP
M12B
NGF

GBL \/-

%

Natricinae

Xenodontinae

Colubrinae

i

. / Homalopsinae
Cystatins, Group Il PLA,
ANP/BNP- CNP-natriuretic Viperidae
natriuretic? C-type lectin a

and B chains

FiG. 11.—Pattern of recruitment of toxin gene families into the snake
venom proteome. The recruitment of cystatins is equivocal (although the
low distance values between the single Elapidae and Viperidae toxins is
consistent with a single origin). ANP/BNP natriuretic toxins have been
fully sequenced only from Elapidae species, but partial sequences with
apparent homology have been sequenced from Viperidae species. Toxin
families hitherto known only from one lineage have not been mapped
onto the tree.

neglected, medically unimportant majority of venomous
snake lineages, with a view towards improving our
understanding of one of the most sophisticated integrated
weapon systems in the natural world.
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