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Abstract: Three-finger toxins (3FTx) represent one of the most abundantly secreted and 

potently toxic components of colubrid (Colubridae), elapid (Elapidae) and psammophid 

(Psammophiinae subfamily of the Lamprophidae) snake venom arsenal. Despite their 

conserved structural similarity, they perform a diversity of biological functions. Although 

they are theorised to undergo adaptive evolution, the underlying diversification 

mechanisms remain elusive. Here, we report the molecular evolution of different 3FTx 

functional forms and show that positively selected point mutations have driven the rapid 

evolution and diversification of 3FTx. These diversification events not only correlate with 

the evolution of advanced venom delivery systems (VDS) in Caenophidia, but in particular 

the explosive diversification of the clade subsequent to the evolution of a high pressure, 

hollow-fanged VDS in elapids, highlighting the significant role of these toxins in the 
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evolution of advanced snakes. We show that Type I, II and III α-neurotoxins have evolved 

with extreme rapidity under the influence of positive selection. We also show that novel 

Oxyuranus/Pseudonaja Type II forms lacking the apotypic loop-2 stabilising cysteine doublet 

characteristic of Type II forms are not phylogenetically basal in relation to other Type IIs as 

previously thought, but are the result of secondary loss of these apotypic cysteines on at least 

three separate occasions. Not all 3FTxs have evolved rapidly: κ-neurotoxins, which form  

non-covalently associated heterodimers, have experienced a relatively weaker influence of 

diversifying selection; while cytotoxic 3FTx, with their functional sites, dispersed over 

40% of the molecular surface, have been extremely constrained by negative selection. We 

show that the a previous theory of 3FTx molecular evolution (termed ASSET) is 

evolutionarily implausible and cannot account for the considerable variation observed in 

very short segments of 3FTx. Instead, we propose a theory of Rapid Accumulation of 

Variations in Exposed Residues (RAVER) to illustrate the significance of point mutations, 

guided by focal mutagenesis and positive selection in the evolution and diversification  

of 3FTx. 

Keywords: positive selection; venom evolution; three-finger toxins; RAVER;  

focal mutagenesis 

 

1. Introduction 

Venoms are key evolutionary innovations in the Kingdom Animalia and are complex concoctions 

of biologically active proteins (from polypeptide globular enzymes to small peptides), salts, and 

organic molecules such as polyamines, amino acids and neurotransmitters [1]. Venom components 

originate via toxin recruitment events during which ordinary protein-encoding genes, typically those 

involved in key regulatory processes (such as hemostasis or neurotransmission) are duplicated, and the 

new copies are selectively expressed in the venom gland [1–13]. These novel paralogs can further 

duplicate and give rise to multigene families, following the “birth and death” mode of evolution, where 

the rapid evolution of these families results in extensive neofunctionalization of some copies, while the 

other non-functional forms are lost through degradation or get transformed into pseudogenes [14]. 

Research has shown that despite the extraordinary diversity of animal toxins, most belong to a limited 

number of enzymatic (e.g., phospholipases, serine proteases, metalloproteinases) and non-enzymatic 

(e.g., three-finger toxins, natriuretic peptides, Kunitz peptides, lectins) protein superfamilies which 

have been convergently recruited in various organisms to perform similar functions [1,3]. 

Three-finger toxins (3FTx) are one of the most abundantly secreted non-enzymatic components of 

elapid (Elapidae), colubrid (Colubridae) and psammophiide (Psammophiinae subfamily withing the 

Lamprophidae) snake venom. They are characterised by a broad diversity of functional forms  

(Table 1). In the past, 3FTx were considered to be exclusive to elapid snake venoms [6]. The discovery 

of α-colubritoxin, however, revealed this potent toxin type to be widespread in “non-front-fanged” 

(NFF) Caenophidia snake lineages [15]. Subsequent studies revealed the broad taxonomic distribution 
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of this toxin type [16–22], which appears to have been recruited into the snake venom arsenal near the 

base of the snake tree [9].  

3FTx are characterised by the presence of three β-loops that extend from the toxin’s small, 

hydrophobic core, giving them the “three-fingered” appearance and their name [23]. The plesiotypic 

(ancestral character state of a molecular scaffold) 3FTx form, such as that found in NFF advanced 

snakes, has ten cysteines in a distinctive pattern, reflective of its molecular origin from the recruitment 

of a LYNX/SLUR nicotinic receptor binding neuromodulation peptide [3,6,15,17]. All described 3FTx 

types from Henophidia, NFF and viperid (Viperidae) snakes contain these ten cysteines, and all of 

these forms that have been functionally investigated are α-neurotoxic, with a potency much greater 

against birds and/or reptiles than mammals [6,9,17,19–21,24]. This taxon specificity in action led to 

the plesiotypic α-neurotoxins being mistakenly referred to as “weak neurotoxins” (c.f. [25]). Similarly, 

this taxon-specific toxicity led to misinterpretation of prey-handling behaviour in an experiment 

investigating the role of venom in the feeding ecology of NFF snakes [26].  

Table 1. Bioactivities of 3FTx types with characterised toxicities. 

Functional Class Mode of Action 

Basal-type α-neurotoxins Antagonists of α1 nicotinic acetylcholine receptors, with a 100-fold 
greater potency to avians/reptiles than mammals. Produces flaccid 
paralysis [21] 

Type I α-neurotoxins Antagonists of α1 nicotinic acetylcholine receptors. Produces flaccid 
paralysis [27] 

Type II α-neurotoxins Antagonists of α1 and α7 nicotinic acetylcholine receptors. Produces 
flaccid paralysis [27] 

Type III α-neurotoxins Antagonists of α1 nicotinic acetylcholine receptors. Produces flaccid 
paralysis [28]  

κ-neurotoxins Antagonists of α3β2 neuronal nicotinic acetylcholine receptor subtype. 
Produces flaccid paralysis [29] 

Adrenergic/Muscarinic neurotoxins Antagonists of a wide variety of adrenergic and muscarinic subtypes 
with extreme specificity for receptor subtypes [30–41] 

Type B Muscarinic toxins Antagonists of M2 muscarinic acetylcholine receptors [42] 
ASIC channel blockers Acts as a reversible gating modifier toxin by antagonistically binding to 

closed/inactivated ASIC1a-ASIC2a (ACCN2-ACCN1) channels in 
central neurons and ASIC1b-containing channels in nociceptors [43] 

Calcium channel blockers Antagonists of L-type calcium channels, thus inhibiting the 
transmission of the action potential [44] 

Acetylcholinesterase inhibitors Inhibit acetylcholinesterase through competitive binding [45] 
Platelet inhibitors Competitively bind to platelet GPIIb/IIIa receptor utilising the RGD 

functional motif, thus blocking platelet aggregation [46] 
Cytotoxins Cell-damaging activity mediated by hydrophobic-patch on molecular 

surface that interacts non-specifically with hydrophobic aspects of the 
cell phospholipid bilayer [47] 

Synergistic Alone are non-toxic but form complexes with α-neurotoxins to 
dramatically enhance neurotoxicity [48] 
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Figure 1. Bayesian molecular phylogeny of representative three-finger toxins. Uniprot [49] 

accession numbers are given for each. Cysteine framework variation is displayed, with 

ancestral cysteines in black and newly evolved cysteines in red. 

 

Subsequent to elapid snakes evolving a high pressure, syringe-like delivery system including venom 

gland compressor musculature and hollow front fangs, apotypic (derived character state of a molecular 

scaffold) forms of 3FTx emerged, characterised by a loss of plesiotypic cysteines 2 and 3 (Figure 1), a 

change that probably resulted in the dramatic potentiation of α-neurotoxicity through the uncoupling of 

loop-1, with these apotypic forms becoming much more potent upon mammalian receptors than the 

more constrained plesiotypic forms [6]. This increased toxicity likely enhanced the role of these 

proteins in prey capture and resulted in a high level expression of α-neurotoxins (α-ntx) lacking the 

second and third plesiotypic cysteines (Type I (aka: short-chain) and Type II (aka: long-chain) α-ntx) 

in the venom glands of these snakes. The increased level of expression was accompanied by 

punctuated molecular evolution, resulting in the emergence of a myriad of structurally and functionally 

novel forms [6]. Structurally novel forms included α-ntx with newly evolved cysteines that stabilised 
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the second loop (Type II α-ntx). Venoms of snakes from the Oxyuranus and Pseudonaja clade are 

unusual in containing significant amounts of 3FTx that display all the features of Type II α-ntx 

(including lacking the 2nd and 3rd plesiotypic cysteines) but lack the apotypic loop-2 stabilising 

cysteine pair characteristic of this type [50]. These toxins would thus be expected to be 

phylogenetically basal to the Type II α-ntx which contain the apotypic loop-2 stabilising cysteine pair. 

Another derived 3FTx structural variation is represented by the κ-neurotoxins (aka: κ-bungarotoxins), 

which form non-covalently associated heterodimers. A number of novel functions also emerged ([6]; 

Table 1; Figure 1), such as κ-ntx specifically targeting the neuronal nicotinic receptors. The most 

extreme neofunctionalisation is represented by the cytotoxins, which have deviated from the highly 

focused ion channel targeting of the α-ntx [51]. Instead, they exhibit a number of novel biological 

activities, including lysis of various types of cells (including erythrocytes and epithelial cells), enzyme 

inhibition (protein kinase C: [52]; Na+/K+ ATPase: [53]), depolarization and contraction of muscle 

cells and prevention of platelet aggregation. All structurally and functionally apotypic 3FTxs lack 

plesiotypic cysteines 2 and 3 (Figure 1), and are expressed in the venoms of elapid snakes in much 

higher levels than the α-ntxs that contain all ten plesiotypic cysteines. 

Although it has been hypothesised and demonstrated through (now obsolete) selection assessments 

that snake venom three-finger toxins have evolved under the influence of positive Darwinian  

selection [6,54,55], the underlying mechanism of evolution driving the diversification of functional 

forms remains unclear. The molecular evolution of several 3FTx forms, such as κ-ntx, plesiotypic 

3FTxs from Henophidia, NFF and elapid snakes and Type III α-neurotoxins from Australian elapids, 

remain unstudied to date. Molecular mechanisms underlying the evolution of the 3FTx gene in viperid 

snakes, which have independently evolved a sophisticated high pressure, hollow-fanged venom 

delivery system (VDS), also remain elusive. Moreover, interpretations regarding the evolution of 

certain 3FTx types, such as the suggestion that cytotoxins evolve under the influence of positive 

selection (with an ω value of 19.5) [55], have been questionable. Recently, the molecular evolution of 

3FTx homologues in Atractaspis sp. was evaluated and the influence of positive Darwinian selection 

on genes encoding them was highlighted [56]. 

As the general organization of the 3FTx gene is highly conserved and ordered, Accelerated 

Segment Switch in Exons to alter Targeting (ASSET) has been postulated as the mechanism driving 

the molecular evolution of 3FTx [16,57]. This theory suggests that during the evolution of the 3FTx 

gene, segments in exonic regions have been exchanged with distinctly different ones and the resultant 

“switching” of segments has generated the observed sequence variation and the functional diversity of 

3FTx. The authors further speculated that point mutations alone could not account for the diversity of 

3FTx functional forms and that they could only be helpful in fine tuning receptor binding capabilities, 

which originally arise through ASSET [16,57]. However, this study attempted to classify regions in 

3FTx based on simplistic “degree of identity” comparisons. Crucially, such analysis does not take into 

account the fact that proteins adopt regionally differential rates of evolution [58–60]. It has been 

previously demonstrated in other toxin types that structurally important residues are constrained by 

negative selection, while regions responsible for biological function and/or those forming the 

molecular surface accumulate variations under an arms race scenario [58,59,61]. This not only 

facilitates functional diversification, but also increases the number of active residues on the surface of 
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venom components that can non-specifically interact with novel receptors in prey and induce a 

plethora of pharmacological effects. 

In the present study, we test the following hypotheses: (i) that 3FTx with specific sites of action are 

involved in a coevolutionary arms race with receptors of prey animals and thus are evolving under the 

influence of positive selection; (ii) that cytotoxic 3FTx, which interact non-specifically with cell 

membranes, do not experience an arms race and evolve under the constraints of negative selection 

pressure; (iii) that, in venoms in which 3FTx are a major component (Elapidae, Colubridae and 

Psammophiinae), 3FTx are rapidly evolving under positive selection (with the exception of cytotoxic 

3FTx in the venom of elapid snakes); (iv) that in venoms in which 3FTx are a minor component 

(Viperidae), 3FTx evolve under a neutral selection regime and do not experience positive selection; 

and (v) the evolution of the advanced venom delivery system in elapid snakes led to an increase in 

diversifying pressure on 3FTx, resulting in the diversity of functional forms present in the venoms of 

snakes from this family. In order to test these hypotheses and provide further insight into the evolution 

and diversification of this toxin superfamily, we reconstructed the complex molecular evolutionary 

history of 3FTx. In particular, this study examined: the relative rate of evolution of the plesiotypic  

α-ntx (i) before and after the evolution of the advanced venom delivery apparatus in Caenophidia 

(advanced snakes), in order to test whether the evolution of a sophisticated VDS influenced the regime 

of 3FTx evolution; (ii) before and after the evolution of the sophisticated, high pressure and  

hollow-fanged venom delivery system in elapids and viperids to test whether the refining of VDS 

influenced selection pressures on 3FTx genes; (iii) the relative rate of 3FTx evolution subsequent to 

the loss of two plesiotypic cysteines and resultant potentiation of α-neurotoxicity; (iv) the relative rate 

of evolution subsequent to the apotyposis (or derivation) of non-covalently associated dimeric forms, 

in order to find out whether these new structural constraints affected natural selection pressures on this 

gene; and finally; (v) the relative rate of evolution subsequent to the apotyposis of cytotoxins was 

examined to understand whether the novel activity recruited by cytotoxins affected their rate  

of evolution. 

2. Results 

Bayesian and maximum-likelihood molecular phylogenetic analyses retrieved phylogenetic trees 

with similar topologies (Figure 1; Supplementary Figure 1), with different toxin sequences forming distinct 

phylogenetic clades as shown previously [3,6,17]. The Bayesian tree (convergence diagnostics: Average 

standard deviation of split frequencies: 0.009; PSRF = 1.00) was built using amino acid sequences, since 

some 3FTxs are only known from their amino acid sequences, while the maximum-likelihood tree  

(1,000 bootstrap replicates; GTR + I + G) was built using all the nucleotide sequences analysed in this 

study (n = 457). The overall topology of these phylogenetic trees was largely in concordance with the 

previously published 3FTx phylogeny [3,6,17]. 

A particularly notable finding was that the novel Type II α-ntx sequences from Oxyuranus and 

Pseudonaja, which lack the Type II α-ntx characteristic cysteine doublet (−2C) between plesiotypic 

cysteines 5 and 6, were not phylogenetically basal to the other Type II, nor were they monophyletic, but 

rather were nested within the regular Type II forms (+2C) (Figure 2). This suggests that the apotypic 

cysteine doublet characteristic of Type II α-ntx was secondarily lost on at least three occasions.  
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Figure 2. Bayesian molecular phylogeny and structural and functional evolution of 

+2C/−2C Type II (long-chain) α-neurotoxins. Pseudonaja/Oxyuranus −2C and +2C 

sequences are coloured purple and green, respectively. Sequences presented (uniprot):  

(1) R4FIT5 Pseudonaja modesta, (2) R4FIU6 Pseudonaja modesta, (3) A8HDK6 

Pseudonaja textilis, (4) R4FK68 Pseudonaja modesta, (5) A8HDK8 Oxyuranus 

microlepidotus, (6) A7X4Q3 Oxyuranus microlepidotus, (7) A8HDK7 Oxyuranus 

microlepidotus, (8) A7X4R0 Oxyuranus microlepidotus, (9) A8HDK9 Oxyuranus 

scutellatus, (10) Q9W7J5 Pseudonaja textilis, (11) R4FIT0 Pseudonaja modesta, (12) 

R4G7K3 Pseudonaja modesta, (13) R4G321 Pseudonaja modesta, (14) R4G2J4 Pseudonaja 

modesta, (15) R4G319 Pseudonaja modesta and (16) R4FK75 Pseudonaja modesta. 

 

Our analysis of the venom gland transcriptome of the unique viperid species Azemiops feae 

recovered a 3FTx transcript that was found in the same clade as the representative sequences from the 

pit-viper Sistrurus catenatus (Figure 1; Supplementary Figure 1). This is the first non-Sistrurus 3FTx 

to be recovered from a viperid snake. Based on an unresolved neighbour joining tree, viperid 3FTx 

were previously reported as polyphyletic, with some sequences nested within elapid 3FTx clade, and 

others in the “non-front-fanged” advanced snake 3FTx clade [24]. However, both Bayesian and 

maximum-likelihood phylogenetic analyses in this study place all viperid sequences in a monophyletic 

clade outside elapid 3FTx clade with strong node support (Figure 1; Supplementary Figure 1). This is 

consistent with the viperid snakes having diverged from the remaining advanced snakes nearly  

54 million years ago [62]. viperid 3FTx homologs retrieved to date indicate that apotypic structural 

and functional forms, such as Type I, II and III α-ntxs, κ-ntxs and cytotoxins, are the result of 

apotyposis in elapid snakes after this split (Figure 1; Supplementary Figure 1). 
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The one-ratio model (ORM), the simplest of the lineage-specific models, computed a wide range of 

ω (dN/dS) values for various types of 3FTx (Supplementary Tables 1–10). This highly conservative 

model can only detect positive selection when the ω ratio, averaged over all sites along the lineages in 

a phylogenetic tree, is significantly greater than one. Despite this, the ω value for most three-finger 

toxins was significantly greater than 1, indicating the strong influence of positive selection in shaping 

the evolution of 3FTx: plesiotypic α-ntx from viperids, NFF and elapids: 1.79, 1.29 and 1.30, 

respectively; Type I, Type II and Type III α-ntx: 1.92, 2.01 and 2.59, respectively; and κ-ntx: 1.64. 

Oxyuranus/Pseudonaja Type II α-ntx with (+2C) and without the cys doublet (−2C) were significantly 

different, with ω values of 0.97 and 2.69, respectively. In contrast to all other 3FTx types, ORM 

estimated an ω value of 0.32 for cytotoxins, indicating an unprecedented lack of variation in this 

unique three-finger toxin. 

The segregation of seromucous mixed maxillary glands into discrete protein and mucus glands at 

the base of the advanced snake tree and the subsequent evolution of a high pressure, hollow-fanged 

venom delivery apparatus independently in Atractaspis/Homoroselaps, elapids and viperids were 

major evolutionary advances in snake-feeding ecology [7,17]. In order to assess the effect of 

apomorphic (derived state of a morphological character) venom delivery systems on the evolution of 

3FTx, we employed the three-ratio model (3RM) and the branch-site test A (BST) on the plesiotypic  

α-ntx from the advanced snakes (NFF, viperids and elapids). While 3RM—which assesses selection 

pressure only across lineages—estimated ω of 1.13, 1.37 and 2.21 for the plesiotypic α-ntx from NFF, 

elapids and viperids, respectively; BST—which assess selection pressures across the sites and along 

the lineages in a tree—estimated ω of 2.16 (22% sites), 4.09 (23% sites) and 6.54 (31% sites), 

respectively (Table 2). NFF and elapid comparisons were insignificant (p > 0.05) for 3RM, while all 

other comparisons were significant (significant at 0.001 even after Bonferroni corrections). 3RM and 

BST indicated a greater influence of positive selection on the plesiotypic α-ntxs in elapid and viperid 

snakes, which have independently evolved sophisticated high pressure and hollow-fanged venom 

delivery systems. 

Table 2. Lineage-specific analyses of plesiotypic Caenophidia three-finger toxins (3FTxs). 

Model ω a Likelihood (ι) Prop. of Sites with ω > 1 b Significance c 

Plesiotypic α-neurotoxins from ‘non-front-fanged’ advanced snakes 

Three-ratio model 1.13 −5982.232579 - P > 0.05 NS 
Branch-site model A 2.16 −5767.710454 22.1% * P << 0.001 

Clade model C 2.20 −5670.149246 49.9% * P << 0.001 

Plesiotypic α-neurotoxins from Elapidae 

Three-ratio model 1.37 −5984.727017 - P > 0.05NS 
Branch-site model A 4.09 −5773.846707 22.6% * P << 0.001 

Clade model C 4.48 −5670.149246 49.9% * P << 0.001 

Plesiotypic α-neurotoxins from Viperidae  

Three-ratio model 2.21 −5981.804559 - * P << 0.001 
Branch-site model A 6.54 −5762.853194 31.1% * P << 0.001 

Clade model C 6.23 −5670.149246 49.9% * P << 0.001 

Legend: a: mean dN/dS; b: Proportion of sites with ω > 1; c: Significance of the model in comparison with 

the null model; * : Bonferroni corrected values; NS: Not significant (at 0.05). 
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We also employed these tests to assess selection pressures along the lineages of the three types of 

elapid-specific apotypic α-ntx that lack plesiotypic cysteines 2 and 3: Type I, II and III α-ntxs  

(Table 3). The three-ratio model (3RM) estimated ω of 1.89, 1.94 and 2.39 for Type I, Type II and 

Type III α-ntxs, respectively. BST estimated ω of 4.39 (10% sites), 4.09 (18% sites) and 4.77 (24% 

sites), respectively for the three types. All these comparisons were significant at 0.001 even after 

Bonferroni corrections. 

Table 3. Lineage-specific analyses of α-neurotoxins. 

Model ω a Likelihood (ι) Prop. of Sites with ω > 1 b Significance c 

Type I α-neurotoxins 

Three-ratio model 1.89 −12,395.465265 - * P << 0.001 
Branch-site model A 4.39 −11,868.198045 9.8% * P << 0.001 

Clade model C 3.36 −11,602.547050 44.4% * P << 0.001 

Type II α-neurotoxins 

Three-ratio model 1.94 −12,395.367372 - * P << 0.001 
Branch-site model A 4.09 −11,751.045621 18.3% * P << 0.001 

Clade model C 4.14 −11,602.547050 44.4% * P << 0.001 

Type III α-neurotoxins 

Three-ratio model 2.39 −12,394.644636 - * P << 0.001 
Branch-site model A 4.77 −11,812.912890 23.7 * P << 0.001 

Clade model C 3.26 −11,602.547050 44.4% * P << 0.001 

Legend: a: mean dN/dS; b: Proportion of sites with ω > 1; c: Significance of the model in comparison with 

the null model; *: Bonferroni corrected values; NS: Not significant (at 0.05). 

Since the aforementioned lineage-specific models often fail to detect episodic diversifying selection 

that only affects certain sites in proteins, we also employed site-specific models. Similar to ORM, 

model 8 estimated ω that ranged widely (Table 4; Figures 3 and 4; Supplementary Tables 1–10). The 

computed ω and the number of positively selected sites detected by model 8 suggest that most  

three-finger toxins have evolved under the strong influence of positive selection; viperids: 3.28  

(30 positively selected (PS) sites; 55% of sites)); plesiotypic α-ntx from NFF: 1.63 (37 PS; 47% of 

sites); plesiotypic α-ntx from elapid snakes: 1.75 (28 PS; 41% of sites); Type I α-ntx: 1.72 (19 PS; 

30.0% of sites); Type II α-ntx: 1.45 (21 PS; 26% of sites); Oxyuranus/Pseudonaja Type II α-ntx with 

cys doublet (+2C): 3.67 (18 PS; 33% of sites); Oxyuranus/Pseudonaja Type II α-ntx without cys 

doublet (−2C): 3.41 (20 PS; 58% of sites); Type III α-ntx 2.61 (30 PS; 42% of sites); κ-bungarotoxins: 

2.11 (5 PS; 9.3% of sites) (Table 4; Figures 3 and 4; Supplementary Tables 1–10). FUBAR and 

MEME identified several episodically diversifying sites in various forms of 3FTxs, highlighting the 

rapid evolution of these toxins (Table 4). In contrast, M8 estimated ω of 0.53 (2 PS and 3% of sites) 

for cytotoxic 3FTx, suggesting that they have evolved under a regime of strong negative selection. 

Compared to the α-ntxs, κ-bungarotoxins have experienced a weaker influence of positive diversifying 

selection, as reflected by the very small number of positively selected sites detected in this lineage by 

various analyses (5PS and 9% of sites; Table 4). 
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Table 4. Dynamic molecular evolution of three-finger toxins (3FTx). 

 FUBAR a MEME b BSR c PAML d 
  #sites #branches M8 M2a 

Plesiotypic α-neurotoxins 
Henophidia 3FTx ω > 1e : 0 

ω < 1f : 0 
0 0 0 0 

ω: 0.78 ω: 0.78 
Non-front-fanged  
advanced snake  

3FTx 

ω > 1e : 18 
ω < 1f : 7 

18 9 37 26 
(27 + 10) (18 + 8) 
ω: 1.63 ω: 1.71 

Elapidae 3FTx ω > 1e : 13 
ω < 1f : 3 

6 8 28 24 
(22 + 6) (15 + 9) 
ω: 1.75 ω: 1.79 

Viperidae 3FTx ω > 1e : 7 
ω < 1f : 1 

0 6 30 24 
(18 + 12) (13 + 11) 
ω: 3.28 ω: 3.28 

Apotypic or Derived α-neurotoxins 
Type I  

α-neurotoxin 
ω > 1e : 22 
ω < 1f : 6 

13 9 19 13 
(13 + 6) (11 + 2) 
ω: 1.72 ω: 1.61 

Type II  
α-neurotoxin 

ω > 1e : 21 
ω < 1f : 11 

30 24 21 19 
(19 + 2) (17 + 2) 
ω: 1.45 ω: 1.43 

      
Type III  

α-neurotoxin 
ω > 1e : 29 
ω < 1f : 4 

24 13 30 27 
(26 + 4) (26 + 1) 
ω: 2.61 ω: 2.59 

Oxyuranus/Pseudonaja derived Type II α-neurotoxins 
With-Cysteine-  

Doublet 
ω > 1e : 11 
ω < 1f : 2 

6 7 18 17 
(11 + 7) (10 + 7) 
ω: 3.67 ω: 3.57 

Without-Cysteine-Doublet ω > 1e : 5 
ω < 1f : 1 

1 2 20 14 
(9 + 11) (2 + 12) 
ω: 3.41 ω: 3.41 

Cytotoxins ω > 1e : 1 
ω < 1f : 2 

7 0 2 2 
(2 + 0) (1 + 1) 
ω: 0.53 ω: 0.57 

Kappa  
neurotoxins 

ω > 1e : 6 
ω < 1f : 0 

3 2 5 5 
(3 + 2) (3 + 2) 
ω: 2.11 ω: 2.11 

Legend: a: Fast Unconstrained Bayesian AppRoximation; b: Sites detected as experiencing episodic 

diversifying selection (0.05 significance) by the Mixed Effects Model Evolution (MEME); c: Number of 

branches detected by the branch-site REL (Random effects likelihood) test as episodically diversifying (not 

comparable to positively selected sites); d: Positively selected sites detected by the Bayes Empirical Bayes 

approach implemented in M8 and M2a. Sites detected at 0.99 and 0.95 significance are indicated in the 

parenthesis (total number of positively selected sites is also indicated along with the estimated ω); e: number 

of sites under pervasive diversifying selection at the posterior probability ≥0.9 (FUBAR); f: Number of sites 

under pervasive purifying selection at the posterior probability ≥0.9 (FUBAR); ω: mean dN/dS. 
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Figure 3. Molecular evolution of plesiotypic 3FTxs. Three-dimensional homology models 

of various three-finger toxins (top: surface-fill; bottom: wireframe), depicting the locations 

of positively selected sites are presented. Site-model 8 computed omega and the total 

number of positively selected sites detected by its Bayes Empirical Bayes (BEB) approach 

(PP ≥ 0.95) are also indicated. 

 

Figure 4. Molecular evolution of derived 3FTx. Three-dimensional homology models of 

various three-finger toxins (top: surface-fill; bottom: wireframe), depicting the locations of 

positively selected sites are presented. Site-model 8 computed omega and the total number 

of positively selected sites detected by its Bayes Empirical Bayes (BEB) approach  

(PP ≥ 0.95) are also indicated. 
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Since lineages may have different proportions of sites under the influence of selection, the direct 

comparison of ω values computed by the aforementioned analyses could be misleading. Hence, we 

employed the clade model c approach to simultaneously compute ω values for different 3FTx clades. 

Clade-model analyses computed ω of 2.20, 4.48 and 6.23 for the plesiotypic α-ntxs from NFF, elapid 

and viperid snakes, respectively (Table 2). This highlights a greater influence of positive selection on 

3FTx from elapid and viperid snake lineages (significant at 0.001 in comparison with site model M1a, 

even after Bonferroni correction), relative to NFF and Henophidia 3FTxs. Within elapid snake specific 

3FTx lineages, clade analyses estimated ω of 3.36, 4.14 and 3.26 for Type I, Type II and Type III  

α-ntxs, respectively, indicating a greater influence of positive Darwinian selection on Type II α-ntx 

compared to the rest (Table 3). 

To provide further support to the positively detected sites by the nucleotide-level selection analyses 

(M8), we employed a complementary protein-level approach implemented in TreeSAAP. With this 

combined approach we were able to identify 18/19 positively selected (PS) sites in Type I, all 21 PS 

sites in Type II, 13/30 PS sites in Type III α-ntxs; 21/30 sites in viperid 3FTx; 11/37 PS sites in NFF 

and 2/2 PS sites in cytotoxic 3FTx (Supplementary Table 11: highlighted in bold). However, this 

approach failed to identify positively selected sites in κ-bungarotoxins and elapid plesiotypic 3FTx 

lineages and +2C and −2C type II α-ntx lineages, suggesting that mutations in these toxin types may 

not be as radical as the ones in the aforementioned types. 

Evolutionary fingerprint analyses clearly depict several residues in most 3FTx as evolving under the 

influence of positive selection, while conversely the majority of sites in cytotoxic 3FTx remain 

constrained under negative selection (Supplementary Figure 2). Branch-site tests assume that a 

phylogenetic tree can be divided into foreground (branches experiencing positive selection) and 

background (branches evolving under neutral or negative selection) lineages. It has been demonstrated 

that these tests can suffer from high rates of false-positives and false-negatives when such modeling 

assumptions are violated [63]. Hence, we employed the branch-site REL (BSR) test, which does not 

make such assumptions and outperforms branch-site tests. This test identified a number of branches in 

the phylogenetic trees of various 3FTx types as episodically diversifying: plesiotypic α-ntx from NFF, 

elapid and viperid snakes: 9, 8 and 6 branches, respectively; Type I, Type II and Type III α-ntx 9,  

24 and 13 branches, respectively; +2C and −2C Oxyuranus/Pseudonaja Type II α-ntx: 7 and 2 

branches, respectively (Supplementary Figures 3–5). This test detected two and three branches, 

respectively in κ-ntxs and cytotoxins, indicating that even these toxin types have experienced the 

influence of episodic bursts of selection, probably during their early stages of evolution 

(Supplementary Figure 6). Computation of accessible surface area ratio indicated that a majority of 

positively selected sites detected by M8 in 3FTx were exposed (completely or partially) to the 

surrounding medium (Figure 5; Supplementary Tables 11). The likelihood of a hypermutable site to be 

exposed to the surrounding medium was 2 to 3.5 times greater, compared to the likelihood of it being 

buried (Table 5). Mapping of positively selected sites onto the alignment of various 3FTx genes 

revealed that nearly all the hypermutable sites are located outside the structurally and functionally 

important regions, suggesting that 3FTx genes are subjected to a very sophisticated focal mutagenesis 

(Figures 2 and 6–8; Supplementary Table 12). 
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Figure 5. Surface accessibility of three-finger toxins. A plot of amino acid positions  

(x-axis) against accessible surface area (ASA) ratio (y-axis) indicating the locations of 

amino acids (exposed or buried) in the crystal structure of various three-finger toxins is 

presented. Positively selected residues are presented as large dots, while the remaining 

sites are presented as small dots in the plot. Residues with an ASA ratio greater than 50% 

are considered to be exposed (ASA of 40%–50% are likely to have exposed side chains), 

while those with a ratio lesser than 20% are considered to be buried to the surrounding 

medium. Three-dimensional structures of various 3FTx types, depicting the locations of 

positively selected (PS) sites along with model 8 omega values and the number of exposed 

and buried positively selected sites are also presented (for details see Table 5). 

 

Table 5. Relative frequency of positively selected sites. 

Toxin Type 
Total 

Residues 

Exposed 

Total * 

Exposed 

PS 

Exposed 

PS % 

Buried 

Total * 

Buried 

PS 

Buried 

PS % 

Ratio Exposed % 

PS:Buried % PS 

Plesiotypic NFF 74 40 25 62.5 17 3 17.6 3.5 

Plesiotyic Viperidae 72 40 22 55% 20 4 20 2.8 

Plesiotypic Elapidae 65 39 23 59 14 3 21.4 2.8 

Type I α-ntx 62 38 15 39.5 10 2 20 2 

Type II α-ntx 74 38 14 36.8 20 3 15 2.5 

Type III α-ntx 57 34 20 58.8 14 3 21.4 2.7 

κ-ntx 64 35 3 8.5 17 0 - N.A. 

Cytotoxic 3FTx 60 34 2 5.9 15 0 - N.A. 

PS = positively selected; N.A. = not applicable; NFF: ‘non-front-fanged’ advanced snakes; Ntx: Neurotoxin; * Some residues were 

ambiguous as being exposed or buried and thus were not assigned to either category.  
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Figure 6. Structural and functional evolution of plesiotypic 3FTxs. Sequence alignment 

and homology models depicting structurally and functionally important residues and 

hypermutable sites of various three-finger toxins are shown. Extremely well-conserved 

residues implicated in structural/functional roles, and hypermutable sites are shaded. 

Sequences presented (uniprot): A. (1) M9T1L2 Aspidites melanocephalus, (2) M9T271 

Aspidites melanocephalus, (3) M9SZR1 Cylindrophis ruffus and 4) M9SZV9 Cylindrophis 

ruffus; B. (1) A5X2W8 Sistrurus catenatus edwardsii, (2) B4Y146 Sistrurus catenatus 

edwardsii, (3) A5X2W7 Sistrurus catenatus edwardsii, (4) B4Y143 Sistrurus catenatus 

edwardsii, (5) B4Y144 Sistrurus catenatus edwardsii and (6) M9T2J4 Azemiops feae;  

C. (1) Q06ZW0 Boiga dendrophila, (2) A0S864 Boiga irregularis, (3) A0S865 Boiga 

irregularis, (4) A7X3V0 Telescopus dhara and (5) A7X3S0 Trimorphodon biscutatus;  

D. (1) Q6IZ95 Bungarus candidus, (2) Q9PW19 Bungarus multicinctus, (3) Q9YGH9 

Bungarus multicinctus, (4) Q8AY51 Bungarus candidus, (5) Q2VBN2 Ophiophagus 

hannah and 6) Q9YGI2 Naja atra. 

 



Toxins 2013, 5 2186 

 

 

Figure 7. Structural and functional evolution of derived α-neurotoxins and κ-neurotoxins. 
Sequence alignment and homology models depicting structurally and functionally 
important residues and hypermutable sites of various three-finger toxins are shown. 
Extremely well-conserved residues implicated in structural/functional roles, and 
hypermutable sites are shaded. Sites that are shown to be structurally/functionally 
important but exhibit less than 70% identity are indicated by arrow heads in the alignment. 
Sequences presented (uniprot): (A). (1) B5G6F6 Oxyuranus microlepidotus, (2) H8PG58 
Suta nigriceps, (3) P60770 Naja atra, (4) P10455 Laticauda colubrina, (5) B2BRS2 
Austrelaps labialis and (6) F8J2H2 Drysdalia coronoides; (B). (1) F8J2E0 Drysdalia 
coronoides, (2) Q8UW29 Hydrophis hardwickii, (3) P01384 Notechis scutatus, (4) P82662 
Ophiophagus hannah, (5) R4G2L3 Suta fasciata and (6) R4G2E5 Brachyurophis roperi; 
C. (1) R4G2S0 Cacophis squamulosus, (2) R4G7H6 Furina ornata, (3) R4G332 
Pseudonaja modesta, (4) Q9W7K2 Pseudonaja textilis, (5) R4G7F3 Brachyurophis roperi 
and (6) R4G7M0 Vermicella annulata; D. (1) Q8AY56 Bungarus candidus, (2) Q8AY55 
Bungarus candidus, (3) P15817 Bungarus multicinctus, (4) P01398 Bungarus multicinctus, 
(5) O12962 Bungarus multicinctus and (6) Q9W729 Bungarus multicinctus. 
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Figure 8. Structural and functional evolution of cytotoxins. Sequence alignment and 

homology models depicting A. the locations of putative functional residues, and B. hydrophobic 

regions of cytotoxins are presented. Extremely well-conserved residues implicated in 

structural/functional roles, and hypermutable sites are shaded. Sequences presented (uniprot): 

(1) P60301 Naja atra, (2) P60303 Naja kaouthia, (3) Q9DGH9 Naja kaouthia, (4) P60301 

Naja sputatrix, (5) Q02454 Naja sputatrix and (6) O93471 Naja sputatrix. 

 

3. Discussion 

3.1. Evolution of an Advanced Venom Delivery Apparatus and Subsequent Evolution of a  

High Pressure, Hollow-Fanged Venom Delivery System May Have Facilitated Rapid Evolution of  

Three-Finger Toxins. 

The early evolution of a venom system has been shown to have played a significant role in the 

diversification of Toxicofera reptiles [9,17,64–67] and the morphology and development of the venom 

delivery system has been shown to be intimately linked to feeding ecology/prey-handling  

behaviour [68–77]. This relationship between venom system morphology and feeding ecology has 

been discussed in detail elsewhere [7,78–81]. While some Henophidia do not use constriction for prey 

capture (e.g., Cylindrophis) and have mandibular and maxillary venom glands that are predominantly 

protein secreting, others (such as Boidae and Pythonidae) are not dependent on envenoming, and 

instead use an apomorphic strategy (constriction) for prey subjugation [9]. In contrast to Henophidia 

snakes, elapid and viperid snakes possess sophisticated venom delivery apparatus that facilitate 

efficient injection of venom into the prey. Various selection analyses employed in this study indicated 

that these contrasting prey capture strategies and the evolution of the advanced venom-delivery 

apparatus in Caenophidia have significantly influenced the evolution of the plesiotypic α-ntxs (Figures 

3 and 6; Tables 2 and 4). Not surprisingly, plesiotypic α-ntxs in NFF (ω = 1.63 and 7 Positively 

Selected (PS) sites), viperid (ω = 3.28 and 30 PS) and elapid (ω = 1.75 and 28 PS) accumulated 

tremendous amount of variations, while their Henophidia homologs (ω = 0.77 and 0 PS) lacked variation 

completely (Tables 2 and 4; Figures 3 and 6). This is consistent with 3FTx variation being unnecessary 

in powerfully constricting snakes, which are not known to use venom for capturing prey [9]. 

Interestingly, the Henophidiae genera Aspidites (Pythonidae) and Cylindrophis (Cylindrophiidae) are 
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separated by ~92 million years of evolution, almost as long as their common ancestor has been 

separated from the advanced snakes (approximate date of divergence 103 mya: [62]). Extreme 

conservation of 3FTx in the largely mucus-secreting maxillary and mandibular glands of these basally 

divergent snakes [9], despite their 90+ million years of independent evolution, is noteworthy. Due to 

the paucity of 3FTx sequences (primarily a result of their extremely low levels of venom gland specific 

transcription), the precise role of these proteins in the venom glands of Henophidia and the reason for the 

lack of variation in their coding sequences remains unclear. 

The significant amount of variation observed in the plesiotypic α-ntxs from the venoms of NFF is 

consistent with high expression levels in the Colubridae and Psammophiinae [17,18]. 3FTx from 

several NFF snakes have been demonstrated to be potently toxic, and in some cases exhibit  

prey-specific toxicity [6,20,21,82]. However, various selection analyses presented in this study 

indicate a greater accumulation of variations in the plesiotypic α-ntxs from viperids and elapids, 

relative to the NFF snake α-ntx homologs: Tables 2 and 4; Figures 3 and 6; Supplementary Tables 1–3; 

Supplementary Figures 2 and 3). The sophisticated venom delivery apparatus of elapids facilitates 

efficient injection of the toxin cocktail into prey animals. Thus, the evolution of the high pressure, 

hollow-fanged venom delivery apparatus appears to have had a considerable influence on the rapid 

diversification of elapid and viperid 3FTxs in comparison with NFF snakes. The polyphyletic NFF 

snakes have been demonstrated to employ a characteristically different venom arsenal from that of 

elapid snakes. The venom in most elapid snakes is rich in three-finger toxins, while only the venoms of 

gracile snakes in Colubridae or Psammophiinae have been shown to contain large amounts of this 

toxin type [6,17,18]. Hence, the differences in overall venom composition could have also influenced 

the differential rate of 3FTx evolution in these lineages. It has already been demonstrated that some 

venom components that are secreted in large amounts by NFF snakes experience a greater influence of 

positive selection relative to those of their elapid snake counterparts [58]. Since most viperid snakes are 

known to employ a haemorrhagic, haemolytic toxin cocktail, the neurotoxic 3FTx may only play an 

ancillary role in envenoming by these snakes. Evidently, viperid snake venoms are dominated by 

hydrolytic enzymes (such as snake venom metalloproteinases and serine proteases), while 3FTx 

expression appears to occur only in insignificant amounts. Hence, the presence of considerable coding 

sequence variation in the viperid 3FTx gene is puzzling. Further sequencing and functional assessment 

of 3FTx from this lineage is warranted to precisely understand the participation of these proteins  

in envenoming. 

3.2. The Deletion of Plesiotypic Cysteine Resides (2 and 3) May Have Triggered an Explosive 

Diversification 

Comparative assessments revealed that although all three forms of apotypic α-ntxs that lack the 2nd 

and 3rd plesiotypic cysteines have evolved particularly rapidly, Type II forms have experienced a 

greater influence of positive selection than Type I or Type III α-ntxs (Tables 3 and 4; Figures 4 and 7; 

Supplementary Tables 4–6; Supplementary Figure 4A,B,C). Unlike Type I α-ntx that can only 

antagonise the muscle nicotinic acetylcholine receptors (α1-nAChR) (the plesiotypic functional 

activity), Type II α-ntxs can strongly bind to neuronal α7-nACh receptors, as well. This expanded 

target potential makes them extremely useful for prey paralysis and probably explains the greater 
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influence of positive selection on this type of 3FTx. Type III α-ntx has been demonstrated to exhibit 

activities similar to that of Type I α-ntxs, but at a lower potency, in experiments conducted on  

mice [28]. Prey-specific toxicity has been demonstrated in a variety of α-ntxs [20,21,82]. Hence, Type 

III α-ntx in the venoms of Australian elapids could be less potent against mammals, but extremely 

potent against the organisms on which they specialise, such as lizards [83–87]. The majority of Type 

III α-ntxs have been recovered from venom gland transcriptomes of small Australian elapid snakes that 

feed exclusively on reptiles. The possibility that this toxin type may exhibit taxon-specific toxicity 

should be investigated further, as it may account for the tremendous influence of positive selection on 

this toxin type. 

3.3. The Dramatic Rate of Evolution of Type II α-Neurotoxins May Have Resulted in the Loss of 

Characteristic Cysteine Doublets on Multiple Occasions in Oxyuranus/Pseudonaja 

Oxyuranus and Pseudonaja, two closely related genera of Australian elapid snakes with unusually 

potent venom, are known to express the regular Type II α-ntx (+2C) and an additional type that lacks 

the two apotypic cysteine residues involved in stabilising loop 2 (−2C). It was previously suggested 

that the absence of the cysteine pair (−2C) was the phylogenetically basal form and that the Type II  

α-ntx form with the cysteine pairs (+2) represented the more derived form [88]. However, our 

molecular phylogenetic analyses revealed that the −2C originate from within the larger Type II α-ntx 

clade and thus represent secondary losses of the apotypic loop-2 stabilising cysteine pair (Figures 1 

and 2; Supplementary Figure 1). Type II α-ntxs have experienced a strong influence of positive 

selection pressure and some of these in Oxyuranus and Pseudonaja species have accumulated 

mutations even in structurally important regions that are typically constrained by negative-selection. 

As a result, on at least three occasions, they have lost the two apotypic cysteine residues that are 

characteristic of Type II α-ntxs (Tables 3 and 4; Figures 2 and 4; Supplementary Figures 4B and 5). 

Taxon-specific variations in potency of the +2C versus −2C have not been investigated but such 

studies would be illuminating. 

3.4. Not All Three-Finger Toxin Clades Evolve via Pervasive Positive Darwinian Selection 

Evidence provided by various analyses [Codeml site, branch, branch-site and clade-specific models: 

M8 and M2a, three-ratio model, branch-site test A, clade model c; HyPhy: MEME, FUBAR,  

Branch-site REL; TreeSAAP: protein-level selection analyses and evolutionary fingerprint analyses 

(Tables 2–4; Figures 2–7; Supplementary Tables 1–9; Supplementary Figures 2–6)], clearly 

demonstrates the substantial influence of positive diversifying selection on the evolution of various 

three-finger toxin types. Conspicuously, while most 3FTx lineages evolved rapidly, cytotoxins  

(ω = 0.53; 2 PS-sites) remain constrained by negative selection (Table 4; Figures 4 and 8; 

Supplementary Figures 2 and 6; Supplementary Table 10). The precise molecular mechanism by which 

cytotoxic 3FTx exert their cell-damaging effects remains unclear, but it has been proposed that a 

highly conserved hydrophobic patch on the cytotoxin’s molecular surface interacts with hydrophobic 

regions of the cell’s phospholipid bilayer [89,90]. Hydrophobic residues that facilitate such  

non-specific interactions are spread over the three loops of the cytotoxins (Figure 8: Panel B) and 

cover nearly 40% of the molecular surface. Additionally, cytotoxins are known to exhibit a diversity of 
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biological functions and the residues implicated in these activities are distributed all along the length 

of the toxin sequence (Figure 8; Supplementary Table 10). In contrast to α-ntx, which bind to specific 

receptor sites, cytotoxins bind in a much more non-specific manner and thus may escape the classic 

predator–prey chemical arms race that influences the diversification of other toxin types. Thus, a lack 

of variation within the cytotoxins is reflective of the tremendous negative selection pressure on their 

structurally and functionally important residues, which further prevents the loss of activity and/or 

potency. In contrast, α-neurotoxins and an array of the ion channels they target, likely exert reciprocal 

selection pressure upon each other which results in the diversification of the 3FTx gene, in a classic 

“Red Queen” coevolutionary arms race scenario. 

Conversely, κ-ntxs (ω = 2.11; 5 PS-sites) have accumulated fewer variations than the α-ntxs  

(Table 4; Figures 4 and 7: Panel D; Supplementary Figures 2 and 6), despite also targeting a narrowly 

defined ion-channel type [91]. The lack of variations in the κ-ntxs could be attributed to their unique 

ability amongst 3FTx to form non-covalent dimers [91]. Thus, most residues in these toxins evolve 

under the influence of negative selection, preventing the accumulation of mutations that might affect 

the three-dimensional structure of the toxin, and thus the ability to non-covalently form dimers. It is 

noteworthy that κ-ntxs are characterised by two stabilising cysteines in loop 2, which maintain a more 

rigid three dimensional structure and are homologous to the same apotypic disulfide-bond in loop II of 

the Type II α-ntxs. Besides the van der Waal’s bond between Phe47 and Leu55 (Figure 7: Panel D), as 

many as six main chain and three side chain hydrogen bonds are known to stabilise this toxin [92]. The 

necessity to form these bonds exerts a strong structural constraint against the accumulation of variation 

in κ-ntxs. Thus variation in κ-ntx is largely limited to five positively selected sites, most of which are 

found in loop II. Loop III and the region between C9–C10, along with the functionally/structurally 

important residues evolve under the constraints of negative selection (Figure 7: Panel D). 

α-ntxs and κ-ntxs have been theorised to originate from a common ancestral 3FTx subtype  

gene [6,93]. They are characterised by the highly conserved signal peptide and 3’ non-coding regions 

and share an apotypic loop-2 stabilising cysteine pair [93–96]. Moreover, comparison of the structural 

motifs in type II α-ntxs and the κ-ntxs, particularly the residues around the shared ten cysteines (eight 

plesiotypic plus the apotypic loop-2 stabilising pair), indicates how closely related the two genes are 

(Figure 7: Panels B and D). Hence, it is apparent that they have originated from a common ancestral 

3FTx subtype gene and the differential rate of evolution has resulted in the observed functional and 

structural differences between the two homologs. In contrast to α-ntx, κ-bungarotoxin sequences are 

very well conserved, as a result of the aforementioned structural constraints (Figure 7: Panel D). 

3.5. Rapid Accumulation of Variations in Exposed Residues (RAVER) and Focal Mutagenesis in the 

Evolution of Snake Venom Three-Finger Toxins 

Considering the highly conserved organization of the exonic regions of 3FTx,  

Doley et al. 2008 [16] developed a hypothesis of “Accelerated Segment Switch in Exons to alter 

Targeting” (ASSET), to explain the molecular mechanism of 3FTx evolution. They postulated that 

during the evolution of the 3FTx gene, segments in exonic regions have been exchanged with 

distinctly different ones and the resultant “switching” of segments has generated the coding sequence 

variation and the diversity of 3FTx. The molecular mechanism of segment “switching” was attributed 
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to a complex scenario involving genetic recombination, splicing variation, and independent 

recruitment events. We argue that these suggested mechanisms are unlikely to have played a major 

role in the evolution of three-finger toxins. Recombination cannot account for the tremendous 

variations observed in extremely short segments of 3FTx; all the observed hypermutations were 

concentrated in 1–6 adjacent amino acid sites (Figures 6–8). Furthermore, recombination would not 

discriminate between functionally/structurally important and unimportant residues. All 3FTx have 

highly conserved residues (with eight of the original ten plesiotypic cysteines conserved in all forms), 

involved in maintaining functional and/or structural stability, and none of the hypermutable sites 

coincide with these (Figures 6–8; Supplementary Table 12). In contrast, evidence supporting the 

hypothesis that all 3FTx genes originated from the same ancestral gene is strong (Figure 1; 

Supplementary Figure 1; [15]). Hence, the suggestion of multiple independent recruitment of 3FTx as 

means to explain the observed variations is implausible. Though alternate splicing or the errors 

associated with this process can introduce variation in toxin length, like recombination, they cannot 

account for the considerable variations observed in very short segments of 3FTx. In addition, 

insertions and/or deletions in shared molecular scaffolds are more plausible explanations for the 

variations in sequence length. 

The role of point mutations in shaping the diversity of 3FTx gene was underestimated by the 

aforementioned authors [57]. They speculated that point mutations alone could not account for the 

diversity of 3FTx functional forms and could have only been helpful in fine-tuning receptor binding 

capabilities, which arise through ASSET [16,57]. A prominent role for point mutations in the evolution 

of 3FTx gene was discounted based on the following reasoning: (i) point mutations would require 

numerous generations to account for the observed variations; (ii) all intermediates would have to be 

selected for via positive selection; and (iii) point mutations would have to occur independently in 

unrelated lineages to produce the same structurally/functionally important conserved motif.  

We argue that these reasons for rejection are not valid. Predatory venom-encoding genes have been 

demonstrated to evolve under the significant influence of positive Darwinian selection, coupled with 

focal mutagenesis [6,59,97]. They are likely involved in a coevolutionary arms race, where evolving 

venom resistance in prey and the evolution of novel venom components exert reciprocal selective 

pressures on one another [98,99]. The recruitment of the 3FTx gene to reptilian venom systems was 

previously thought to have occurred within Caenophidia snakes between the divergence of the pareatid 

snakes approximately 65 million years ago (MYA) and that of the viperid snakes approximately  

54 MYA [62]. We have recently recovered 3FTx transcripts from the venom glands of Henophidia 

snakes, demonstrating that this recruitment event in fact occurred within the ancient Afrophidia snake 

clade circa 104 MYA [9]. 3FTx genes explosively diversified subsequent to the evolution of the 

advanced venom delivery apparatus in elapids, 40 MYA (Tables 2–4; Figures 3–8; Supplementary 

Figures 2–8). Therefore, an appropriately large number of generations have passed for point mutations, 

under the influence of positive Darwinian selection to shape the diversity of 3FTxs and account for the 

tremendous variation observed. 

The aforementioned study [16] also failed to take into account the essence of focal mutagenesis, in 

which point mutations in certain regions of the toxins, such as the molecular surface, may confer an 

adaptive advantage. In order to conserve catalytic functions, most mutations in proteins concentrate in 

structurally and/or functionally unimportant regions. Since mutations occur randomly, they are equally 
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likely to occur even within important regions of proteins. However, mutations in structurally or 

functionally important regions could disrupt the normal functioning of the protein and hence they are 

filtered out of the population by natural selection. Synthesis and secretion of venom proteins is an 

energetically expensive process [100–102] and hence, natural selection will only permit the rapid 

accumulation of mutations in certain regions of the toxin, such as the molecular surface, where 

accumulation of variation could confer an adaptive advantage. Evidently, venom proteins have been 

demonstrated to evolve via mutation of the surface chemistry, which introduces novel residues (and 

side-chains) on the molecular surface that could non-specifically interact with the novel targets in prey 

animals and cause a myriad of pharmacological effects [58,59,103]. In certain organisms like vampire 

bats, focal mutagenesis in venom proteins can be advantageous as it is likely to delay/prevent the 

development of immunological resistance in the prey by introducing extremely variable protein surface 

chemistry in the vampire bat population [61]. Not surprisingly, in vampire bats it has been previously 

demonstrated that prolonged feeding can result in mounting of immunological resistance in the  

prey [104], further evidence of the predator–prey (or parasite–host) arms race in which toxins are 

involved. Mapping of mutations onto three-dimensional homology models and computation of 

accessible surface area ratios for various three-finger toxins, suggested that a greater proportion of 

mutations have accumulated on the molecular surface and in the loops of these toxins (Figures 2–8; 

Supplementary Tables 11). We found that the likelihood of hypermutable sites in three-finger toxins 

occurring on the molecular surface was greater than the likelihood of the site being buried (Table 5). 

Hence, we propose a new theory called: “Rapid Accumulation of Variations in Exposed residues” 

(RAVER) to explain the molecular evolution of the 3FTx gene. We theorise that most predatory 

venom proteins experience RAVER or focal mutagenesis, which preserves the structural and 

functional integrity of the toxin, while permitting the rapid accumulation of variations on the 

molecular surface through positive selection. Thus, while variations accumulate on the molecular 

surface of the toxin under a coevolutionary arms race scenario, rare mutations in structural and 

functional residues of rapidly evolving types generate novel molecular scaffolds that get selected only 

if they considerably improve the potency of the toxin in comparison with the plesiotypic form. 

Otherwise, such mutations may get eliminated from the population by negative selection. The 

frequency at which such “rare” mutations accumulate within a functional type likely depends on the 

strength of positive Darwinian selection. Indeed, rapid accumulation of point mutations under the 

influence of positive selection in Type II α-ntx gene has led to the origination of −2C Type II α-ntxs on 

multiple occasions in Oxyuranus and Pseudonaja, two closely related genera of Australian elapid 

snakes with unusually potent venom (Figure 2). 

3.6. Structure–Function Relationship in Three-Finger Toxins 

Mapping positively selected sites onto alignments of various three-finger toxins revealed that a 

large number of residues implicated in structural/functional roles were extremely well conserved  

(80% ≥ identity; Figures 7 and 8; Supplementary Table 12). However, very few 

functionally/structurally important residues (A28, F29, R36 and F65) in Type II α-ntxs have been 

poorly conserved. This is not surprising given the rapid evolution of Type II α-ntxs, which has even 

resulted in the replacement of two cysteine residues that are usually invariant, and led to the formation 
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of new toxin type (−2C Type II α-ntxs) in Oxyurnaus and Pseudonaja species. It has been 

demonstrated in erabutoxin (a Type I α-ntx; uniprot: P60775) that mutations at position 29 have a 

drastic effect on the binding affinity of this toxin to the Torpedo nAChR [105]. Evaluation of 

mutations at the homologous site in α-cobratoxin (a Type II α-ntx; uniprot: P01391) were shown to 

have varied effects on binding affinities [106]. Although most sequences had a conserved 

phenylalanine residue at this position (F29; 49%), a number of others (33%) had tryptophan and 

histidine residues. It has been demonstrated that these substitutions (F29W and F29H) do not affect the 

binding affinity of Type II α-ntxs in any way [106]. Two other sequences (1%) had a leucine (F29L) 

residue in this position, which has been shown to substantially reduce the binding affinity of this  

toxin [106]. However, lysine residues in loop II (K23) and loop III (K49) have been shown to mediate 

the binding of Type II α-ntxs to α1-nAChRs and both these residues remain extremely well conserved 

in these toxins (Figure 7: Panel B; Supplementary Table 12). Thus, α1-nAChR targeting capability of 

Type II α-ntxs remains intact, despite the mutation at the 29th position. Similarly, it has been 

demonstrated that A28R mutation does not affect the function of Type II α-ntxs [107] and a large 

number of sequences (77%) at this site either had alanine or arginine residues. Mutations at R36 and 

F65 have shown to only slightly affect the binding capabilities of Type II α-ntxs at both neuronal and 

muscle nAChR. It should be noted that α-ntx possess several extremely well-conserved residues that 

mediate the specific binding of these toxins to either muscular or neuronal receptors (Figure 7). Thus, 

despite the mutations at R36 and F65, these toxins can still bind to muscular and neuronal receptors. 

These examples clearly depict how Type II α-ntxs cope with rapid mutation rate. R33 in Type II α-ntx 

has been shown to be the most important site for toxicity, as it caused the greatest effect on the 

function of Type II α-ntx in mutational studies. We noted that this site was extremely well conserved 

(86% identity; Supplementary Table 12). Mutational studies have also shown that T47 and D53, 

despite being very closely located to K49 on loop III, are unlikely to play a significant functional  

role [106]. Interestingly, our selection analyses have detected these sites as hypermutable, among 21 

other hypermutable sites in Type II α-ntx (Figure 7: Panel B). Rare mutations at functional sites, such 

as I26R in erabutoxin (P60775), have been demonstrated to increase the affinity of α-ntx to their 

receptors [108]. Hence, rapidly evolving α-ntx could derive extremely useful functional variations by 

conserving most functional residues. 

Most hypervariable regions (73%) in Type III α-ntx were concentrated in loop I and loop II (Figure 

7), regions that harbour residues implicated in binding of Type I α-ntx to α1-nAChR (Supplementary 

Table 12). However, unlike Type I α-ntxs, Type III seem to have very well-conserved region between 

plesiotypic cysteines 9 and 10 [6], which form the 4th disulfide bond in both these toxins. The 

corresponding region in Type II α-ntx is also very well conserved, and shares with Type III α-ntx three 

highly conserved amino acids: S54, T55 and D56 (Figure 7). It is very likely that this region, being the 

only well-conserved region in Type III α-ntx, plays an important structural or functional role. The 

invariant Asp 56 in this region seems particularly important for the activity of this toxin clade. The 

observed pattern of accumulation of hypermutations (Figure 7) can also be explained by prey-specific 

and intraspecific conservation of residues in Type III α-ntx. 

κ-bungarotoxins and cytotoxins were unique among all 3FTx lineages examined in this study, in 

having extremely conserved amino acid sequences (Figures 7 and 8; Supplementary Figure 6). 52% 

(33 residues) and 65% (53 residues) of sites in κ-bungarotoxins and cytotoxins, respectively, were 
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invariant. Although toxins from these two clades accumulated a few positively selected sites (5 and 2, 

respectively), they did not overlap with residues implicated in structural/functional stability.  

Mapping of hypermutable sites onto the alignments of the plesiotypic 3FTxs reveals a lack of 

conservation of most residues implicated in receptor binding of Type I and Type II elapid  

α-neurotoxins, which may be reflective of differences in taxon specificity. However, the residues 

implicated for activity in Type I and II may be specific to the assay utilised, as plesiotypic 3FTx have 

shown to be dramatically more potent against birds and/or lizards than mammals, but the specific 

receptors mediating the activity have not yet been elucidated. The residues implicated in Type I or 

Type II binding may also be inaccurate as a result of the former prevalence of fish assays (Torpedo 

species), which may not be reflective of residues actually important in binding to the receptors of 

natural prey items.  

The impact of the development of the venom-delivery system (VDS) and its subsequent 

specialisation in Caenophidia (advanced snakes) on the evolution of 3FTxs is intriguing. While 3FTx 

was recruited at the base of the snake evolutionary tree [9], only two NFF lineages (Colubridae and 

Psammophiinae) and one front-fanged lineage (Elapidae) express this toxin type as the dominant  

class [18]. As many ‘non-front-fanged’ advanced snakes use venom as part of a combined arsenal that 

includes variable use of constriction and bite pressure [67] there may therefore be less selective 

pressure on the diversification of 3FTx within most members of the NFF lineages. Viperids, on the 

other hand, rely on venom for prey subjugation, and possess arguably the most sophisticated  

venom-delivery apparatus found amongst snakes (hinged hollow fangs). Viperid snakes utilise a 

primarily haemolytic and necrotic venom arsenal for prey subjugation and thus 3FTx have not 

diversified greatly within this family. This may be linked to prey preference, particularly in pit vipers, 

which possess heat-sensing pits for targeting endothermic (“warm-blooded”) prey. As plesiotypic 

3FTx have been shown to be more toxic to birds and reptiles than mammals [21,109], snakes that 

specialise in feeding on mammals may have less use for this toxin type. Conversely, the earliest elapid 

snake lineages, with hollow, fixed front fangs, may have fed primarily on reptiles as plesiomorphic 

elapid snakes do today (e.g., [83,85]), and employed 3FTx as their primary weapon. Hence,  

three-finger toxins in these snakes underwent rapid and explosive diversification under the significant 

influence of positive Darwinian selection, resulting in the formation of a myriad of three-finger toxin 

forms which appear to be exclusive to the elapid snakes (Figure 1). Interestingly, this diversification of 

3FTx within elapids led to the origin of new forms that were highly potent against mammals, 

facilitating more efficient predation on a wider range of prey species including the rodent prey 

specialised upon by some extant lineages of elapids such as Oxyuranus and Pseudonaja. The 

plesiotypic 3FTx, which are expressed in relatively lower amounts in elapids, viperids and a majority 

of “non-front-fanged” advanced snakes (except in Colubridae and Psammophiinae venoms where they 

are the dominant toxin types), could still play an ancillary envenoming function and thus still be 

subject to RAVER, potentially facilitating the apotyposis of novel functional forms within this clade. 

Further sequencing and biochemical activity testing of plesiotypic 3FTx genes will unravel their 

molecular evolutionary history and the underlying mechanisms of action. 
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4. Conclusion 

In this study, we investigated the following hypotheses: (i) that 3FTx with specific sites of action 

are involved in coevolutionary arms races with receptors of prey species and thus are evolving under 

the influence of positive selection; (ii) that cytotoxic 3FTx, which interact non-specifically with cell 

membranes, are not involved in chemical arms race, and thus are constrained by negative selection; 

(iii) that, in venoms in which 3FTx are a major component (Elapidae, Colubridae and 

Psammophiinae), 3FTx are rapidly evolving under positive selection (with the exception of cytotoxic 

3FTx in the venom of elapid snakes); (iv) that in venoms in which 3FTx are a minor component 

(Viperidae), 3FTx evolve under a neutral selection regime and do not experience positive selection; 

and (v) the evolution of the advanced venom delivery system in elapid snakes led to an increase in 

positive selection pressure on 3FTx, resulting in the diversity of functional forms present in the 

venoms of snakes from this family. We were able to confirm hypotheses i, ii, iii and v, but surprisingly 

the viperid 3FTx were unravelled to have evolved under the influence of positive selection, resulting in 

the rejection of hypothesis iv.  

In addition, we found that point mutations, coupled with focal mutagenesis and positive selection, 

have played a primary role in the evolution and diversification of snake venom three-finger toxins. We 

thus reject ASSET as a viable theory for explaining the molecular evolution of three-finger toxins. 

Instead, we propose “Rapid Accumulation of Variations in Exposed Residues” (RAVER) to explain 

the dynamic evolution of 3FTx. We elucidate an exquisite molecular mechanism in which the 

molecular surface, and the regions not implicated in structural/functional stability rapidly diversify, 

while the core structural/functional residues remain largely constrained by negative selection. 

However, even these highly conserved residues occasionally accumulate point mutations, especially in 

toxins with multiple targets such as Type II α-ntx. Rare mutations in these highly conserved residues 

can generate unique toxin forms with novel folds, which might be more potent than the  

plesiotypic form.  

We have also shown for the first time that not all 3FTx forms are influenced by positive selection 

and highlighted the differential rate of evolution of various 3FTx types. As well as confirming 

hypothesis ii, by showing that cytotoxins have been constrained by negative selection, we found that 

unique forms like the κ-ntx have experienced weaker influence of positive selection than the α-ntx. 

These results underscore the dynamic nature of venom evolution, where a myriad of forces, such as 

morphological refinement of the venom delivery system, shifts in feeding ecology, coevolutionary 

chemical arms races driving toxin neofunctionalisation via changes in targeting and evolution of toxin 

complexes with multiple subunits. all influence the molecular evolutionary history of toxins. This 

generates a molecular complexity that is both a blessing and a curse. On one hand, this complexity 

complicates snakebite treatment because of highly variable clinical sequelae and relative cross-reactivity of 

available antivenoms. On the other hand, it provides a rich pool of novel investigational ligands with 

tremendous potential for biodiscovery.  

It should be emphasised that this study only focused upon structural/functional 3FTx variants for 

which there were sufficient nucleotides to analyse. As shown in Figure 1 and Table 1, there are 

numerous functional variants that were not studied due to insufficient nucleotide sequences available 

(with some known only from peptide sequences). In addition, as is clearly evident in Figure 1 and has 
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been covered in-depth by us previously [6], there is a tremendous diversity of 3FTxs for which no 

functional activity has been determined. Thus, 3FTx represent a tremendous resource not only for 

investigating the fundamentals of molecular evolution but also as a vast pool of novel peptides for 

biodiscovery. It is hoped that this study will stimulate further work on this very interesting class of 

snake toxin. 

5. Materials and Methods 

5.1. Specimens  

Azemiops feae specimen was from Hunan, China.  

5.2. Azemiops Feae Library Construction  

Total RNA was extracted from the dissected venom gland using the standard TRIzol Plus method 

(Invitrogen). Extracts were enriched for mRNA using standard RNeasy mRNA mini kit (Qiagen) 

protocol. mRNA was reverse transcribed, fragmented and ligated to a unique 10-base multiplex 

identifier (MID) tag prepared using standard protocols and applied to one PicoTitrePlate (PTP) for 

simultaneous amplification and sequencing on a Roche 454 GS FLX+ Titanium platform (Australian 

Genome Research Facility). Automated grouping and analysis of sample-specific MID reads 

informatically separated sequences from the other transcriptomes on the plates, which were then  

post-processed to remove low quality sequences before de novo assembly into contiguous sequences 

(contigs) using v 3.4.0.1 of the MIRA software program, resulting in 1656 contigs from 811,967 

assembled bases (490 average per contig). Assembled contigs were processed using CLC Main Work 

Bench (CLC-Bio) and Blast2GO bioinformatic suite [110] to provide Gene Ontology, BLAST and 

domain/Interpro annotation. 

5.3. Sequence Retrieval and Alignment 

To assess the molecular evolutionary history of various three-finger toxins, we retrieved nucleotide 

sequences from National Center for Biotechnology Information [111]. The new toxin sequence recovered 

from Azemiops feae in this study was identified by comparison of the translated DNA sequence with 

those of previously characterised toxins using a BLAST search [112] implemented in the UniProtKB 

protein database. Translated nucleotide sequences were aligned using MUSCLE 3.8 [113] and the 

alignments were manually inspected to rectify errors. Sequences were refined to remove regions with 

gaps in more than 50% of the sequences. All alignments are available as supplementary file 1, while 

all the nucleotide sequences (with their NCBI accession codes) analysed in this study are deposited as 

supplementary file 2. 

5.4. Phylogenetics  

Phylogenetic analyses were performed to allow the reconstruction of the molecular evolutionary 

history of various types of three-finger toxins. Since many three-finger toxin forms are only known 

from their amino acid sequences, amino acid datasets were used for the Bayesian inference. Trees were 
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generated using both Bayesian and maximum-likelihood inferences. MrBayes 3.2.1 [114] was 

employed for the Bayesian inference, using lset rates = invgamma with prset aamodelpr = mixed 

command, which enables the program to optimise between nine different amino acid substitution 

matrices implemented in MrBayes. WAG [115] was chosen as the best substitution matrix by the 

program. The analysis was performed by running a minimum of 1107 generations in four chains, and 

saving every 100th tree. The log-likelihood score of each saved tree was plotted against the number of 

generations to establish the point at which the log likelihood scores reached their asymptote, and the 

posterior probabilities for clades established by constructing a majority-rule consensus tree for all trees 

generated after completion of the burn-in phase. Maximum-likelihood method implemented in  

PhyML [116] was also employed on the nucleotide datasets and node support was evaluated with  

1,000 bootstrapping replicates. 

5.5. Test for Recombination  

To overcome the effects of recombination on the phylogenetic and evolutionary interpretations [117], 

we employed Single Breakpoint algorithms implemented in the HyPhy package and assessed 

recombination on all the toxin forms examined in this study [118,119]. When potential breakpoints 

were detected using the small sample Akaike information Criterion (AICc), the multiple sequence 

alignments were compartmentalised before conducting selection analyses, so as to allow the different 

recombinant regions to have distinct phylogenetic topology. 

5.6. Selection Analyses  

We evaluated the influence of natural selection on various types of three-finger toxins using 

maximum-likelihood models [120,121] implemented in Codeml of the PAML package [122]. We 

utilised the three-ratio model as well as the optimised branch-site test [123,124] to detect evolutionary 

selection pressures acting upon various toxin lineages. The three-ratio model evaluates selection across 

the lineages alone, while the branch-site model allows  to vary across the sites of the protein and 

along the branches in the tree. The latter is known for its reasonable power and accuracy to detect short 

bursts of episodic adaptations [123]. However, both the three-ratio and branch-site models require the 

foreground (lineages under positive selection) and background lineages (lineages lacking positive 

selection) to be defined a priori. Such predefined biological hypotheses are often unavailable and it 

becomes difficult to define the foreground lineages. Therefore, we treated each 3FTx type being 

compared as a foreground branch alternatively and tested multiple hypotheses. A likelihood-ratio test 

was then conducted by comparing the model that allows  to be greater than 1 in the foreground 

branch, with a null model that does not ( constrained 1). It has been suggested that while 

implementing multiple hypotheses using branch and branch-site models, it is necessary to control the 

family-wise error rate (FWER or Type I error) [123]. We used Bonferroni correction to account for 

such errors. It uses α/n as the significance level to test each hypothesis, where “α” is the significance 

level and “n” is the number of independent true null hypotheses. We further utilised branch-site 

Random Effects Likelihood (REL) [63] to identify lineages evolving under the influence of episodic 

diversifying selection pressures. Unlike the aforementioned lineage-specific models, branch-site REL 

does not require a priori identification of foreground and background branches. Moreover, branch-site 
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tests have been shown to be prone to false positives when the background lineages are also under the 

influence of positive selection and branch-site test was designed to address these shortcomings [63]. 

Since lineage-specific models assess the effects of selection only along the branches, they often fail 

to identify regions in proteins that might be affected by episodic selection pressures and ultimately 

underestimate the strength of selection. Hence, we employed site-specific models that estimate positive 

selection statistically as a non-synonymous-to-synonymous nucleotide-substitution rate ratio (ω) 

significantly greater than 1. We compared likelihood values for three pairs of models with different 

assumed ω distributions as no a priori expectation exists for the same: M0 (constant ω rates across all 

sites) versus M3 (allows ω to vary across sites within “n” discrete categories, n ≥ 3); M1a (a model of 

neutral evolution) where all sites are assumed to be either under negative (ω < 1) or neutral selection 

(ω = 1) versus M2a (a model of positive selection) which in addition to the site classes mentioned for 

M1a, assumes a third category of sites; sites with ω > 1 (positive selection) and M7 (Beta) versus M8 

(Beta and ω), and models that mirror the evolutionary constraints of M1 and M2 but assume that ω 

values are drawn from a beta distribution [125]. Only if the alternative models (M3, M2a and M8: 

allow sites with ω > 1) show a better fit in Likelihood Ratio Test (LRT) relative to their null models 

(M0, M1a and M7: do not allow sites ω > 1), are their results considered significant. It should be noted 

that although we have reported the results of all site-specific models (M2a, M3 and M8), only the 

results of M8, the most accurate model among these, were considered for downstream analyses 

(Figures 3–8; Tables 4 and 5). LRT is estimated as twice the difference in maximum likelihood values 

between nested models and compared with the χ2
 
distribution with the appropriate degree of 

freedom—the difference in the number of parameters between the two models. The Bayes empirical 

Bayes (BEB) approach [126] was used to identify amino acids under positive selection by calculating 

the posterior probabilities that a particular amino acid belongs to a given selection class (neutral, 

conserved or highly variable). Sites with greater posterior probability (PP ≥ 95%) of belonging to the 

“ω > 1 class” were inferred to be positively selected. 

FUBAR [127] implemented in HyPhy [128] was employed to detect codon sites evolving under the 

influence of pervasive diversifying and purifying selection pressures. The Mixed Effects Model of 

Evolution (MEME) [129] was also employed to efficiently detect sites that experience diversifying 

selection for a short period in the evolutionary timescale. Non-synonymous mutations that introduce 

extremely variant amino acids are more likely to influence the structure-function, and hence the fitness 

of the organism, relative to mutations that introduce amino acids with similar side-chains as the 

ancestral residues. Further support for the results of the nucleotide-level selection analyses was 

obtained and the radicalness of mutations were assessed using a complementary protein-level approach 

implemented in TreeSAAP [130]. 

Direct comparison of ω values computed from different datasets can be misleading, as they can 

have different proportions of sites under selection. Hence, we assessed the selection pressures shaping 

different 3FTx clades by employing clade model analyses implemented in Codeml and simultaneously 

estimated ω values [131]. The significance of the analysis was tested by comparing the likelihood of 

this model with that of model M1a. To clearly depict the proportion of sites under different regimes of 

selection, an evolutionary fingerprint analysis was carried out using the evolutionary selection distance 

(ESD) algorithm implemented in datamonkey [132]. 
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5.7. Structural Analyses  

To depict the natural selection pressures influencing the evolution of various three-finger toxins, we 

mapped the sites under positive selection on the homology models created using the Phyre 2  

webserver [133]. Pymol 1.3 [134] was used to visualise and generate the images of homology models. 

The Consurf webserver [135] was used for mapping the evolutionary selection pressures on the  

three-dimensional homology models. GETAREA [136] was used to calculate the Accessible Surface 

Area (ASA) or the solvent exposure of amino-acid side chains. It uses the atom co-ordinates of the 

PDB file and indicates if a residue is buried or exposed to the surrounding medium by comparing the 

ratio between side chain ASA and the “random coil” values per residue. An amino acid is considered 

to be buried if it has an ASA less than 20% and exposed if the ASA is more than or equal to 50%. 

When ASA ratio lies between 40% and 50%, it is highly likely that the residues have their side chains 

exposed to the surrounding medium. 
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