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Venoms of the viperid sister genera Eristicophis and Pseudocerastes are poorly studied despite
their anecdotal reputation for producing severe or even lethal envenomations. This is due
in part to the remote and politically unstable regions that they occupy. All species
contained are sit and wait ambush feeders. Thus, this study examined their venoms
through proteomics techniques in order to establish if this feeding ecology, and putatively
low levels of gene flow, have resulted in significant variations in venom profile. The
techniques indeed revealed extreme venom variation. This has immediate implications as
only one antivenom is made (using the venom of Pseudocerastes persicus) yet the proteomic
variation suggests that it would be of only limited use for the other species, even the sister
species Pseudocerastes fieldi. The high degree of variation however also points toward these
species being rich resources for novel compounds which may have use as lead molecules in
drug design and development.

Biological significance
These results show extreme venom variation between these closely related snakes.
These results have direct implications for the treatment of the envenomed patient.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Snake envenoming is a neglected tropical disease that causes
up to 94,000 deaths worldwide each year [1]. Members of two
families of snakes are predominately responsible for causing
these deaths — Viperidae (viperid snakes or ‘vipers’) and
Elapidae (elapid snakes). The venom composition of many
viperid snakes has been well-studied over the past decade,
with the recent advances in ‘omic’ technologies facilitating
the characterization of the gene and protein compositions of
the venom gland and secreted venom, respectively [2–5].
Characterizing the toxin composition of snake venoms is
important for understanding the evolutionary basis of this
trophic adaptation, identifying novel bioactive compounds
and investigating the interaction between venoms and
antivenoms [4,6–11].

Little is known about the venom composition of Middle
Eastern viperid snakes of the genera Eristicophis and Pseudocerastes
(Fig. 1). These genera are sister to one another and their clade
is sister to that of all other Eurasian Viperinae snakes [12].
Eristicophis is a monotypic genus while Pseudocerastes includes
Pseudocerastes fieldi, Pseudocerastes persicus and the recently
described species Pseudocerastes urarachnoides [13].

Eristicophis macmahonii is a rare species found in the sandy
deserts of Afghanistan, Iran and Pakistan [14–16]. It is known
Fig. 1 – Species studied: A) Eristicophis macmahonii, B)
as Macmahon's viper, the leaf-nosed viper or the Asian sand
viper [15]. A unique morphological feature of this snake is the
butterfly-like shape of the rostral scale [16]. E. macmahonii is a
fairly stout, dorsoventrally flattened viper, and reaches a
maximum length of 72 cm [15]. It is reported to feed upon
diverse variety of prey items, including lizards, rodents and
birds [14–16]. While little is known about the venom of this
species, it has been suggested that its potency may be
comparable to that of the Echis saw-scaled vipers [15,16].

P. fieldi is widely distributed in the Middle East, including
Israel, Syria, Jordan, Iraq, Saudi Arabia and parts of the Sinai
[13,15–17]. This species inhabits open deserts with moderate
scrub cover and scattered stones and reaches a maximum
length of 89 cm. P. fieldi appears to be the dominant species of
viperid snake wherever it is found. It occurs in a variety of
habitats including basalt and limestone deserts (sometimes in
association with wadi systems), rolling steppes with volcanic
outcrops, mud flats [18], rocky slopes and mountainous
country [19]. It prefers hard substrates and avoids true sand
dunes. A diverse range of prey items, including lizards,
rodents and birds, has been reported for this species.

P. persicus occurs in Iran, Afghanistan, Pakistan and
Northern Oman. This species is allopatric with P. fieldi — for
example, the Zagros Range in west Iran divides the distribu-
tion of the two congeners [13,17]. P. persicus has an average
Pseudocerastes fieldi and C) Pseudocerastes persicus.
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total length of 70 cm, but a maximum length of 108 cm has
been reported [14–16,20]. It occupies a variety of habitats
including semi-desert, rocky and sandy grounds, rocky slopes
and walls, limestone deposits, and flat plains with vegetation
cover [14,20]. Like its sister taxon P. fieldi, P. persicus is
primarily nocturnal but may be active during the day in cool
weather [16]. Prey items reported for this species include
arthropods [21] in addition to lizards, rodents and birds
[14,16,20]. The abundance of feathers found in feces collected
in the wild suggests a preference for birds over other food
items [15]. P. persicus is sympatric with other viper species
such as Echis carinatus, Macrovipera lebetina, P. urarachnoides,
and the elapid snake Walterinnesia morgani (Fathinia personal
observations).

The venoms of these three vipers have been poorly studied
and reports of envenoming in humans are scarce. The clinical
effects of P. fieldi and P. persicus envenomings in humans have
not yet been reported, while a single report of a bite by
E. macmahonii described symptoms including nausea, swell-
ing, fatigue, stiffness, necrosis and a dry mouth [22]. There are
however anecdotal reports of deaths from E. macmahonii bites.
The venoms of E. macmahonii and P. persicus are potently
coagulopathic [23–26]. Anticoagulant kunitz peptides have
been isolated and characterized from E. macmahonii venom,
although this toxin type appears to be absent from the venom
of P. persicus [27,28]. Conversely, hypotensive natriuretic
peptides have been isolated and characterized from P. persicus
venom, a toxin type apparently absent in the venom of
E. macmahonii [23,28].

Interestingly, the venom of P. fieldi appears to be substan-
tially different from that of both P. persicus and E. macmahonii.
This species has potently neurotoxic venom, which is rich in a
novel PLA2 complex that causes an irreversible neuromuscu-
lar blockade at the presynaptic site [29]. This heterodimeric
complex consists of two subunits: A basic phospholipase
(CBII) and an acidic phospholipase (CBI). CBI may protect the
other subunits from non-specific binding and proteolytic
activity, and the activity of CBII increases when CBI is present
[30]. In addition to an apparent absence of the coagulopathic
toxins characterized from its sister species, the venom of
P. fieldi also appears to lack the L-amino acid oxidase (LAAO)
enzyme that is a major component of the venom of some
species of viperid snake [27,31].

While it is apparent that P. fieldi and P. persicus differ in
venom function [17,24], the extent of this variation has not
been established in terms of venom composition. Moreover, a
broad characterization of the toxin composition of these two
species and E.macmahonii remains to be elucidated. This study
therefore aims to re-address this issue by using comparative
proteomics to characterize and compare the toxin composi-
tion of these three largely unstudied and, potentially, medi-
cally important vipers. Such a study is long overdue as the
potential capability of the Iranian polyvalent snake antiven-
om (Razi Vaccine & Serum Research Institute, Iran), used to
treat P. persicus envenomings, at cross-neutralizing the venom
of P. fieldi and E. macmahonii remains unknown. In addition to
having potentially immediate implications for the treatment
of envenomed patients, the characterization of toxins from
unstudied venoms may also uncover novel compounds that
mayhavepotential uses for drug designanddevelopment [8,32].
2. Materials and methods

2.1. Snake venom collection

Leaf-nosed viper (Eristocophis macmahonii) venom was collect-
ed from 3 adult male snakes from the Nushki district (30.12°N
67.01°E) of Balochistan, Pakistan as described earlier [27,31,33].
For P. fieldi and P. persicus of unknown geographical breeding
origin 3 adult male captives were milked by BGF. Venom
samples were immediately centrifuged (8500 rpm for 30 min
at 4 °C) to remove suspended cells. Supernatant(s) were
subsequently filtered using 0.22 μm PVDF syringe filters
(Millipore, USA) to remove insoluble materials. Samples were
then lyophilized and stored at −86 °C.

2.2. 1D/2D PAGE analysis

For quick comparative analysis of snake venoms (~20 μg),
12% polyacrylamide gel (0.75 mm, 7 cm) electrophoresis
(Mini-PROTEAN®3, Bio-Rad, USA) under dissociating (SDS)
and dissociating and denaturing (SDS and DTT) conditions
was performed. The gels were polymerized, run with a very
well-established protocol [2,32] and stained by using 0.2%
colloidal Coomassie Brilliant Blue G250 and destained in 1%
acetic acid.

Two-dimensional gel electrophoresis was performed ac-
cording to our established protocol [2]. Briefly, ~1 mg of
venom sample(s) was directly solubilized in 300 μL of rehy-
dration buffer (8 M urea, 100 mM DTT, 4% CHAPS, 110 mM
DTT, 0.01% bromophenol and 0.5% ampholytes pH 3–10).
Samples were centrifuged (14,000 rpm for 5 min at 4 °C), and
the supernatant was applied to IEF gel strips (non-linear IPG
pH 3–10 and 17 cm) for 24 h in passive rehydration. Venom
components were focussed in a PROTEAN i12 IEF CELL
(Bio-Rad, USA). The IEF running conditions were as follows:
100 V for 1 h, 500 V for 1 h, 1000 V for 1 h and 8000 V for
98400 V/h. A constant current of 50 μA per strip at 20 °C was
applied. After running IEF, IPG strips were equilibrated for
10 min in an equilibration buffer (50 mM Tris–HCl, pH 8.8, 6 M
urea, 2% SDS, 30% glycerol, 2% DTT) followed by a second
incubation for 20 min in an equilibration buffer that had DTT
replaced with 2.5% iodoacetamide. IPG strips were briefly
rinsed in SDS-PAGE running buffer (Tris–glycine, pH 8.3) and
loaded on top of 12% polyacrylamide gels and covered with
0.5% (w/v) agarose. Second dimension gel fractionation was
performed at 4 °C in 10 mA/per gel for 20 min followed by
30 mA/per gel for 4 h or until the bromophenol dye front was
1 cm from the base of the gel. Finally, gelswere brieflywashed in
Milli Q water and stained in 0.2% (w/v) colloidal Coomassie
Brilliant BlueG250 overnight anddestained in 1%acetic acid (v/v).

Selected spots were subsequently picked from the gels and
digested overnight (at 37 °C) using sequencing grade trypsin
(Sigma, USA) as previously described [2]. Briefly, gel spots
were washed with ultrapure water, destained (40 mM
NH4CO3/50% acetonitrile) and dehydrated (100% acetonitrile).
Gel spots were rehydrated in 10 μL of 20 μg/mL TPCK Trypsin
and incubated at 37 °C overnight. Digested peptides were
eluted by washing the gel spots for 20 min with each of the
following solutions: 20 μL of 1% formic acid, followed by 5%
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ACN/0.5% formic acid. The cleaved eluted peptides were
pooled and further subjected for identification using LC–MS/
MS analysis.

2.3. Whole venom shotgun sequence analysis

For shotgun sequencing, reduction and alkylation were per-
formed by redissolving 3 μg of the whole crude venom in 50 μL
of 100 mM ammonium carbonate. 50 μL of 2% iodoethanol/0.5%
triethylphosphine in acetonitrile was then added to the
redissolved samples. The reaction mixture was incubated for
2 h at 37 °C, before being dried by vacuum and re-suspended in
20 μL of 2.5% acetonitrile (ACN), and 1% formic acid (v/v).
Additionally, 3 μg of reduced and alkylated sample was resus-
pended in 20 μL of 40 mMammoniumbicarbonate, before being
incubated overnight (at 37 °C) with 750 ng of sequencing grade
trypsin. Digestion was stopped by the addition of 1 μL of
concentrated formic acid and only 5 μL (0.75 μg) of each sample
was processed by LC–MS/MS [2].

2.4. Liquid chromatography–mass spectrometry

2D-gel spots and/or shotgun samples were analyzed by LC–
MS/MS using an Agilent Zorbax stable bond C18 column
(2.1 mm × 100 mm, 1.8 μm particle size, 300 Å pore size) at a
flow of 400 μL/min and a gradient of 1–40% solvent B (90%
acetonitrile, 0.1% formic acid) in 0.1% formic acid over 15 min
or 4 min for shotgun and 2D-gel spots, respectively, on a
Shimadzu Nexera UHPLC coupled with an AB SCIEX 5600
Triple TOF mass spectrometer (ABSciex). MS–MS spectra were
acquired at a rate of 20 scans/s, with a cycle time of 2.3 s, and
optimized for high resolution. MS2 spectra were searched
against UniProt databanks using Proteinpilot v4.0 (ABSciex).
Crude venomswere also analyzed by RP-HPLC LC–MS using an
Agilent Zorbax 2.1 × 250 mm, 5 μm, 300 Å C18 column at a
flow rate of 250 μL/min and a gradient of 1–60% B (90%
acetonitrile, 0.1% formic acid) in 0.1% formic acid over 60 min
on an Agilent LC coupled to an ABSciex Pulsar Q-TOF mass
spectrometer with scanning between 400 and 2000 m/z and a
cycle time of 1 s. Data processing was performed with the aid
of the software Analyst QS (ABSciex). Data tables are shown in
Supplementary Tables 1–6.
3. Results and discussion

In comparison with 1D-PAGE profiles the venom composition
of E. macmahonii and P. persicus exhibited a number of
similarities (Fig. 2A). Both venoms contain components of a
broad range of molecular weight, with the majority between
10 kDa and 70 kDa in size. The 1D-PAGE profiles for E.
macmahonii and P. persicus venoms therefore show some
similarity to those previously described from other members
of the Viperinae, such as the saw-scaled vipers of the genus
Echis [34], the genus Cerastes [35], and the European vipers of
the genus Vipera [36]. However, the 1D-PAGE profile of P. fieldi
venom revealed marked differences to the venoms of other
Viperinae, including its congener P. persicus and E. macmahonii
(Fig. 2A). Noticeably, the vast majority of venom proteins are
found at low molecular weights (~12–15 kDa), with only faint
protein bands evident above 20 kDa in size, suggesting a low
concentration of high molecular weight components.

The complexity of snake venom is more readily revealed
by 2D-PAGE analysis than 1D-PAGE due to related toxin
isoforms often sharing similar molecular weights but differ-
ent isoelectric points [2]. Consequently, we investigated the
venoms of E. macmahonii (Fig. 2B), P. fieldi (Fig. 2C) and
P. persicus (Fig. 2D) using 2D-PAGE and identified the venom
toxins present in each gel profile by in-gel tryptic digestion
and shotgun sequencing using LC–MS–MS analysis (Table 1),
with shotgun sequencing better able to detect small peptides.

The 2D-PAGE profile of E. macmahonii (Fig. 2B) revealed a
relatively complex venom composition, with toxins distribut-
ed over a variety of molecular weights (as observed in the
1D-PAGE) and isoelectric points. The venom composition of
E. macmahonii consisted of toxin families typically identified
in viperid snake venoms, including enzymatic and non-
enzymatic components. Enzymatic toxins recovered included
snake venom metalloproteinases (SVMPs), kallikrein serine
proteases, L-amino acid oxidases (LAAOs) and phospholipase
A2s (PLA2s). Non-enzymatic components included disintegrins,
lectins, cysteine-rich secretory proteins (CRiSP) and vascular
endothelial growth factor (VEGF). Notably, considerable varia-
tion in isoelectric point was observed for many of these toxin
families, including LAAOs, kallikrein, lectin and PLA2s — the
latter of which included both basic and acidic forms. These
results are likely indicative of the presence of multiple
related toxin isoforms, which are encoded by the same gene
family. This isotypic diversity occurs in venom as the result
of gene duplication events occurring over evolutionary time
[11,37–39].

In contrast to the complex composition of E. macmahonii
venom, venom of the closely related species P. fieldi appears
relatively simple (Fig. 2C). As noted by 1D-PAGE analysis,
relatively fewmid-high molecular weight venom components
were present in the 2D-PAGE profile, with only kallikrein,
CRiSP and nucleotidases observed. Notably, for both kallikrein
and CRiSP, and also the low molecular weight lectins: (i) the
number of spots, (ii) the intensity of those spots and (iii) the
range of their isoelectric separation were found to be much
lower than in E. macmahonii. Perhaps most importantly, we
identified no SVMPs, or disintegrins, in the venom of P. fieldi.
These components are heavily implicated in causing patho-
logically important hemotoxicity in envenoming and are
widely distributed in most viperid snake venoms, with
SVMPs by far the most abundant toxin type in many species
[3,40]. Their absence in the venom of P. fieldi suggests a lack of
hemotoxic activity for this venom. A zymographic analysis,
using 0.4% gelatin (Bloom 50) as substrate also confirmed the
lack of gelatin-digesting metalloprotease activity (data not
shown). In contrast, P. fieldi venom contains a wide diversity
of PLA2 enzymes, spreading across the isoelectric range
displayed in the 2D-PAGE profile (Fig. 2C). These include the
acidic and basic PLA2s observed in E. macmahonii venom
(although the protein bands for the basic forms are more
extensive in P. fieldi), but also neutral PLA2s that were unique
to this species in the present study (Fig. 2). Moreover, the
venom of P. fieldi was found to contain larger concentrations
of kunitz peptides than present in other species, an observa-
tion that has been made previously [28].



Fig. 2 – A) 1D gel comparison of Eristicophis macmahonii, Pseudocerastes fieldi and Pseudocerastes persicus, B) 2D gel of Eristicophis
macmahonii, C) 2D gel of Pseudocerastes fieldi and D) 2D gel of Pseudocerastes persicus.
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The venom composition of P. persicus appears to be
intermediate in profile between that of E. macmahonii and
P. fieldi (Fig. 2D). In the mid-high molecular weight region,
similar to the same weight range of E. macmahonii venom, we
identified a wide isoelectric range of SVMPs. In addition, a
small number of kallikrein and CRiSP proteins that showed
similarities to those identified from P. fieldi were also
identified in this region. In the low molecular weight region
P. persicus venom contained both the acidic and basic PLA2

enzymes identified in P. fieldi and E. macmahonii. Neutral PLA2s
were present but in low amounts. Lectin toxins were also
present and found to be more diverse and intensely stained
than those observed in P. fieldi, but less so than those of
E. macmahonii. Further similarities between P. persicus venom
and that of its congener included the presence of nerve
growth factor (NGF) and the absence of disintegrins and
LAAOs, although both nucloetidases and kunitz peptides
appear to be novel to P. fieldi. Notably, no evidence of
natriuretic peptides, previously identified in the venom of
P. persicus [23], was found here.

Variation in venom composition is a well-documented
phenomenon that can occur at any taxonomic level, including
inter- and intra-specifically, as well as ontogenetically
[2,3,5,9,41–50]. This variation is largely thought to be dictated
by the evolutionary history of toxin gene families, with the
toxin gene composition present in the genome dictated by
gene duplication and loss events occurring over evolutionary
time in different species [11,51,52]. However, postgenomic
factors, such as the up- or down-regulation of genes being
transcribed and translated in the venom gland may also



Table 1 – Toxins detected by proteomics analyses.

E. macmahonii P. fieldi P. persicus

Toxin type SG G SG G SG G
CRiSP ✓ ✓ ✓ ✓ ✓ ✓

Disintegrin ✓ ✓ ✓

Kallikrein ✓ ✓ ✓ ✓ ✓ ✓

Kunitz ✓ ✓ ✓ ✓

LAAO ✓ ✓ ✓ ✓

Lectin ✓ ✓ ✓ ✓ ✓ ✓

Natriuretic ✓

NGF ✓ ✓ ✓ ✓

Nucleotidase ✓ ✓ ✓

Phosphodiesterase ✓

PLA2 ✓ ✓ ✓ ✓ ✓ ✓

SVMP ✓ ✓ ✓ ✓ ✓

VEGF ✓ ✓ ✓ ✓ ✓ ✓

SG = shotgun; G = gel analysis; CRiSP = cysteine rich secretory protein; LAAO = L-amino acid oxidase; NGF = nerve growth factor; SVMP =
snake venom metalloprotease; VEGF = vascular endothelial growth factor.
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greatly affect the toxic composition of venom, particularly
between closely related species or over the lifetime of the
animal. Post-translational modifications are another great
source of diversity [3,44]. Hereweobserve amajor compositional
change between the venoms of P. fieldi and E. macmahonii
and moderate differences between those of P. persicus and
E. macmahonii and the congeners of P. fieldi and P. persicus. From
an evolutionary perspective, the venom of E. macmahonii
seemingly represents the plesiotypic state as it, contains a
wide range of toxic components similar to that observed in the
venoms of other viperid snakes [2]. It is apparent that a broad
shift in toxin composition occurs between the sister genera of
Eristicophis and Pseudocerastes, which apparently involves a
‘streamlining’ of the toxin arsenal, including a reduction in
kallikrein and lectin diversity and complete loss of LAAO and
disintegrins. However, substantial changes also exist within
Pseudocerastes, suggesting that P. persicus perhaps represents an
intermediate condition between those of E. macmahonii and
P. fieldi — emphasizing that the venom of P. fieldi likely
represents the most apotypic condition, based on this study.

The most notable compositional changes observable in the
venom of P. fieldi are the complete absence of SVMP toxins and
the unique presence of neutral PLA2 molecules (Fig. 2). These
compositional changes are seemingly reflected in venom
function, with P. fieldi venom exhibiting potent neurotoxic
activity as the result of PLA2 complexes [29], in contrast with
the coagulopathic venoms of E. macmahonii and P. persicus
[23–26]. Noticeably, other reports of viper venoms possessing
neurotoxic activity via PLA2 complexing, such as those
observed for Crotalus scutulatus scutulatus, are also associated
with a reduction in SVMPs [53]. This suggests that the
evolution of neurotoxic PLA2 toxins observed in viperid
snakes may also be intrinsically associated with the parallel
loss or down-regulation of SVMP toxins.

The forces shaping the observed adaptive change in
venom composition are unclear due to the poor state of
knowledge regarding the natural history of these three
species. Since snake venoms are primarily used for prey
capture, it has previously been suggested that variation in
venom composition may be driven by adaptation for
prey-specific venom toxicity [8,35,54]. However, from what
little data exists, the species studied here all appear to be
opportunistic ambush-feeding predators that occupy diverse
ecological niches and feed as generalists on a variety of prey
items. Further research, particularly ecological research, is
therefore required to elucidate the driving forces and mech-
anisms underpinning the substantial variation in venom
composition observed in this study.

Critically, the broad changes in venom toxin composition
observed between these three Middle Eastern vipers raise
questions relating to the potential validity of using the Iranian
polyvalent antivenom raised against P. persicus venom for the
treatment of snakebite by both P. fieldi and E. macmahonii.
Variation in venom composition can undermine antivenom
therapy, as antibodies directed against the venom of one
species are unlikely to cross-react and neutralize toxin
components that are unique to the venom of another species.
The efficacy of antivenoms used to treat the bites of snakeswith
venoms not used for antivenom production can be very hard to
predict, and is not necessarily predicted by the phylogenetic
relatedness of the snakes in question due to the adaptive
processes driving venom evolution [4,34,37,55,56]. Our evidence
of considerable variation in venom composition between P.
persicus and P. fieldi, coupledwith the previous reports of notable
differences in their venom functions, suggests that the treat-
ment of P. fieldi envenomings with the Iranian polyvalent
antivenom should be undertaken with great care. However,
considering that an alternate treatment in the form of a P.
fieldi-specific antivenom does not currently exist, envenomed
victims would likely benefit from the future incorporation of P.
fieldi venom into the immunizing mixture used for Middle
Eastern antivenom production.

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.jprot.2014.09.003.
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