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Abstract: Fish venoms are often poorly studied, in part due to the difficulty in obtaining, extracting,
and storing them. In this study, we characterize the cardiovascular and neurotoxic effects of
the venoms from the following six species of fish: the cartilaginous stingrays Neotrygon kuhlii
and Himantura toshi, and the bony fish Platycephalus fucus, Girella tricuspidata, Mugil cephalus, and
Dentex tumifrons. All venoms (10-100 pg/kg, i.v.), except G. tricuspidata and P. fuscus, induced a
biphasic response on mean arterial pressure (MAP) in the anesthetised rat. P. fucus venom exhibited
a hypotensive response, while venom from G. tricuspidata displayed a single depressor response.
All venoms induced cardiovascular collapse at 200 pug/kg, i.v. The in vitro neurotoxic effects of
venom were examined using the chick biventer cervicis nerve-muscle (CBCNM) preparation. N. kuhlii,
H. toshi, and P. fucus venoms caused concentration-dependent inhibition of indirect twitches in the
CBCNM preparation. These three venoms also inhibited responses to exogenous acetylcholine (ACh)
and carbachol (CCh), but not potassium chloride (KCl), indicating a post-synaptic mode of action.
Venom from G. tricuspidata, M. cephalus, and D. tumifrons had no significant effect on indirect twitches
or agonist responses in the CBCNM. Our results demonstrate that envenoming by these species of fish
may result in moderate cardiovascular and/or neurotoxic effects. Future studies aimed at identifying
the molecules responsible for these effects could uncover potentially novel lead compounds for future
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pharmaceuticals, in addition to generating new knowledge about the evolutionary relationships
between venomous animals.

Keywords: venom; fish; cardiovascular; neuromuscular; toxin

1. Introduction

Venomous marine fish account for nearly two-thirds of the population of venomous vertebrates,
and include stingrays, scorpionfish, zebrafish, stonefish, and some species of shark, catfish, and
blenny [1-3]. Fish venoms are thought to have originated on at least 18 occasions via the process of
convergent evolution [2—4]. However, while significant research effort has focused on characterising
the biological activity of venom from terrestrial animals—particularly snakes—little is known about
the composition or biological activity of venom from many species of fish. A main reason that
these marine vertebrates remain understudied is the difficulty in obtaining, storing, and extracting
venom samples [5]. Nevertheless, marine venoms represent a diverse source of untapped biological
compounds which, when considering the utility of toxins isolated from other venomous lineages [6],
may be useful as potential research, pharmaceutical, or diagnostic tools.

The majority of venomous fish are sedentary, slow moving, and live in shallow, protected
waters [7]. Their venoms are classified as defensive, and are thought to be used much less frequently
than those employed by other venomous animals for predatory purposes [8]. Despite their extensive
taxonomic diversity at the organismal level, the venom delivery systems used by the majority of fish
are similar, and typically consist of dorsal, pectoral, and/or clitheral spines [2,3]. This is perhaps
not surprising, as the venoms are almost exclusively used for defence, and such spines are likely to
provide a degree of mechanical protection alongside the chemical defences conferred by their toxic
secretions. In addition, the pharmacological activities of fish venoms have been postulated to be
similar, despite their numerous independent origins. This is perhaps best evidenced by the clinical
effects of envenoming, which are often defined as resulting in considerable pain disproportionate to
the wound size, although a diverse array of other symptoms such as itching, erythema, and paralysis
have been described, resulting in occasional fatalities due to cardiovascular and neurological systemic
effects [9-13].

Surprisingly, little research has focused on the pharmacological or compositional nature of
fish venoms. One exception to this is that of the stonefish (Synanceia spp.), which due to their
medically-important nature have been reasonably well studied in terms of their pharmacology,
epidemiology, and clinical aspects of envenoming [14-20]. In the present study, we address the
paucity of information surrounding fish venoms by investigating those secretions from a variety of
cartilaginous (the blue-spotted stingray Neotrygon kuhlii and the brown whipray Himantura toshi, both
family Dasyatidae) and bony fish (the dusky flathead Platycephalus fuscus, family Platycephalidae;
the Luderick Bream Girella tricuspidata, family Kyphosidae; the mullet Mugil cephalus, family Mugilidae;
and the yellowback seabream Dentex tumifrons, family Sparidae).

2. Results

2.1. Effects of Crude Venoms on the Cardiovascular System

Venoms of H. toshi and N. kuhlii (10-100 pg/kg, i.v.) produced a dose-dependent biphasic effect
on mean arterial pressure (MAP), consisting of a depressor response, followed by a sustained pressor
response (Figure 1a,c). Venom of P. fuscus (10-100 ug/kg, i.v.) only caused a transient depressor
response (Figure 1le). All three venoms (10-100 ug/kg, i.v.) had no significant effect on heart rate
(Figure 1b,d,f), but caused complete cardiovascular collapse in response to 200 ug/kg, i.v. (Figure 1la—f).
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Figure 1. The effect of H. toshi, N. kuhlii, and P. fuscus venoms on mean arterial pressure (MAP;

a,c,e, respectively) and heart rate (HR; b,d £, respectively) of the anaesthetized rat. N = 4. Each data

point and error bar represents the mean of four experiments and the corresponding SEM, respectively.

Interestingly, the venom of Girella tricuspidata (5 ug protein/kg, i.v.) produced a biphasic
depressor effect consisting of a transient depressor response, followed by a sustained depressor
response (Figure 2a), with no significant effect on HR (Figure 2b). M. cephalus (3 ug/kg, i.v.) and
D. tumifrons (15 png/kg, i.v.) venoms both caused an initial depressor response followed by a pressor
response which recovered over time (Figure 2c,e). In contrast to the stingray venoms, both M. cephalus
and D. tumifrons venoms caused small transient decreases in the heart rate of the anaesthetised rat
(Figure 2d,f). However, these changes in HR were not significant. The vehicle control group (i.e., saline
administration) exhibited no significant effect on either MAP or HR of the anaesthetized rat (data
not shown).
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Figure 2. The effect of G. tricuspidata, M. cephalus, and D. tumifrons venoms on mean arterial pressure
(MAP; a,ce, respectively) and heart rate (b,d f, respectively) of the anaesthetised rat. N = 3. Each data
point and error bar represents the mean of three experiments and the corresponding SEM.

2.2. Effects of Crude Venoms on the Chick Biventer Cervicis Nerve-Muscle (CBCNM) Preparation

The venom of the two stingray species—H. toshi (0.5-1 pg/mL) and N. kuhlii (1-5 pg/mL)—both
abolished indirect twitches of the CBCNM preparation in a concentration-dependent manner
(Figure 3a,c). Both venoms also significantly inhibited contractile responses to acetylcholine (ACh)
and carbachol (CCh), but had no significant effect on responses to KCl (Figure 3b,d). Similarly, venom
from the bony fish P. fuscus (1-2 pg/mlL) was also found to abolish the indirect twitches of the CBCNM
preparation in a concentration-dependent manner (Figure 3e), and significantly inhibited the contractile
response to ACh and CCh, but not KCl (Figure 3f). The time taken for twitch height to reduce by 50%
of initial (i.e., t5p) in response to 1 ng/mL of N. kuhlii, H. toshi, and P. fuscus venoms was determined.
The t5 of H. toshi venom was significantly less than that of both N. kuhlii and P. fuscus (p < 0.05; one-way
ANOVA; N =4, Table 1). In contrast, G. tricuspidata, M. cephalus, and D. tumifrons venoms induced
transient increases in indirect twitches of the CBCNM preparation (Figure 4a,c,e), and none of these
venoms significantly inhibited contractile responses to ACh, CCh, or KC1 (Figure 4b,d,f).
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Figure 3. The effect of H. toshi (0.5-5 pg/mL), N. kuhlii (1-5 ug/mL), and P. fuscus (1-2 pg/mL) venom
on indirect twitches (a,c,e, respectively), and contractile responses to exogenous acetylcholine (ACh),
carbachol (CCh), or KCl1 (b,d f, respectively) the CBCNM preparation N = 4. * p < 0.05, significantly
different from the pre-venom baseline, paired t-test. Error bars represent the SEM.

Table 1. Ty values for fish venoms at 1 pug/mL (mean + SEM).

Species tso (min)
N. kuhlii 19 +£0.3
H. toshi 7+£01*
P. fuscus 22+02

* Significantly different compared to N. kuhlii and P. fuscus (p < 0.05) one-way ANOVA; N = 4.
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Figure 4. The effect of G. tricuspidata (5 pg/mL), M. cephalus (5.5-11 ng/mL), and D. tumifrons
(0.5 pg/mL) venom on indirect twitches (a,c,e, respectively), and contractile responses to exogenous
ACh, CCh or KCI (b,d f, respectively) of the CBCNM preparation. N = 4. Error bars represent the SEM.

3. Discussion

Fish venoms show enormous diversity and complexity of pharmacologically active components [21].
One of the major clinical symptoms observed in humans after fish envenoming is hypotension with
marked cardiovascular activity [11]. In this study, we have examined the effect of several fish venoms
on the cardiovascular system of anaesthetised rats, paying particular attention to MAP and HR.
We have also examined the in vitro neurotoxic effects of these venoms using an avian skeletal muscle
preparation. All venoms examined had some effect on the MAP of anesthetised rats, while only the
venoms of N. kuhlii, H. toshi, and P. fuscus displayed in vitro neurotoxicity. Interestingly, three of the
venoms potentiated twitch height in the skeletal muscle.

In the anesthetised rat, the venoms from N. kuhlii, H. toshi, and P. fuscus induced an initial decrease
in MAP at concentrations of 10-100 pg/kg. In the case of P. fuscus venom, the MAP returned to
baseline. However N. kuhlii and H. toshi venoms displayed a biphasic response characterised by
an initial drop in blood pressure followed by a sustained pressor response. This biphasic response
is similar to results observed in previous studies on the Scorpaeniformes Gymnapistes marmoratus,
Pterois volitans, and Synanceia verrucosa [22-24]. The pressoric cardiovascular responses induced by
G. marmoratus, P. volitans, and S. verrucosa venoms were thought to involve an activity dependent on
adrenoceptors [22,25,26] and/or to be mediated by non-adrenergic mechanisms [1,27]. Prior research
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also suggested that the depressor response induced by some fish venoms involved muscarinic receptors
and/or nitric oxide synthesis [1,19,27-29]. All three venoms—N. kuhlii, H. toshi, and P. fuscus—induced
cardiovascular collapse at 200 ug/kg.

Our results indicate that the venom of G. tricuspidata induces a sustained drop in MAP at
concentrations as low as 5 pg/kg. The venom from M. cephalus (3 ng/kg) and D. tumifrons (15 ug/kg)
also induced a biphasic response similar to that observed after administering venom from N. kuhlii
and H. toshi. The limited supply of venom from these three species precluded us from examining
their effects at higher concentrations. However, unlike N. kuhlii and H. toshi venoms, M. cephalus and
D. tumifrons venoms had a transient negative chronotropic effect on HR, in addition to changes in blood
pressure. Previously described chronotropic responses to fish venom have been attributed to different
mechanisms, including the activity of chemical mediators in the venom [30], activity on adrenergic and
muscarinic receptors [27], or the release of endogenous autacoids in cardiac tissues [22,27,28]. Further
studies are required to determine the mechanism(s) responsible for the decrease in HR observed in
response to D. tumifrons and M. cephalus venoms.

Although cardiovascular activity is the most widely reported symptom of fish envenoming,
paralysis, muscle spasm, and prolonged weakness have also been noted in envenomed humans [31].
Consequently, we studied the effects of the above-mentioned fish venoms on the skeletal
neuromuscular junction, using the chick biventer cervicis nerve-muscle preparation. The venoms from
H. toshi, N. kuhlii, and P. fuscus induced a concentration-dependent decrease in indirect twitches of
the preparation, with abolition of twitches within 60 min at the tested concentrations. In addition,
all three venoms significantly inhibited responses to the nicotinic agonists ACh and CCh, but not
to KCl. These results are consistent with the presence of postsynaptic neurotoxins in these venoms.
Postsynaptic neurotoxins have been shown to bind with high affinity to nicotinic acetylcholine receptors
and competitively antagonise the actions of acetylcholine [32]. Similar findings have been described
from the venom of the bony fish Scatophagus argus [33]. In contrast, D. tumifrons, G. tricuspidata, and
M. cephalus venoms did not abolish indirect twitches of the chick biventer cervicis. Instead, these
venoms induced a transient potentiating effect with no significant inhibition of the contractile responses
to exogenous agonists.

To the best of our knowledge, this is the first study to examine the neurotoxic and cardiovascular
effects of the venoms from these six species of fish. The cardiovascular effects as indicated by changes
in MAP were apparent across all of the species tested, even at low concentrations. However, in vitro
neurotoxicity was only observed in response to H. toshi, N. kuhlii, and P. fuscus venoms. These results
corroborate other findings, suggesting that while most fish venoms are convergently functionally
similar due to shared selection pressures for their use as defensive weapons, their effects differ
quantitatively due to unique components in different venomous fish lineages [15], in addition to the
quantity of the venom delivered [31]. Due to the limited amount of pharmacological data available
for fish venoms, our results contribute significantly to our understanding of the functional activity of
bony and cartilaginous fish venoms. These results have implications spanning evolutionary theory
through to the treatment of envenomed patients.

4. Materials and Methods
4.1. Crude Venom

4.1.1. Sample Collection and Storage

Specimens were collected under collection permit Q52013/MAN143 (13/12/13) and animal ethics
approval SBS/345/12/ARC (24 December 2015). Spine samples were collected and immediately snap
frozen in liquid nitrogen before storage at —80 °C until use.
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Chondrichthyes (Cartilaginous Fish)

Himantura toshi (Brown Whipray—collected from Moreton Bay, Queensland) and Neotrygon kuhlii
(Bluespot stingray—collected from Moreton Bay, Queensland)

Osteichthyes (Bony Fish)

Dentex tumifrons (Yellowbacked Seabream—collected from Moreton Bay, Queensland Australia),
Girella tricuspidata (Luderick Bream—collected from Moreton Bay, Queensland) Mugil cephalus (Flathead
Mullet—collected from Moreton Bay, Queensland); and Platycephalus fuscus (Flathead Bream—collected
from Mornington Peninsula, Victoria and Moreton Bay, Queensland).

4.1.2. Protein Extraction

The crude venom was extracted from the fish spines and cleaned as previously described [5].
A solution was prepared on ice using 3.7 g EDTA, 5 mL 200 mM PMSE, 10 mL Triton X-100, 1 L purified
water. The solution was poured over the spines and placed on a magnetic stirrer overnight (>12 h) at
4 °C. The solution was then centrifuged at 4500 RCF, 4 °C for 30 min, before 80% ammonium sulphate
saturation (~43% w/v) was added and the solution placed on a magnetic stirrer at 4 °C and left
overnight (>12 h). The protein-containing precipitate was then centrifuged at 4500 RCEF, 4 °C for 30 min.
The supernatant was removed, and the protein precipitate brought up in purified water (ratio of
15 parts water to 1 part supernatant), vortexed for 2 min, followed by centrifugation at 14,000 RCF, 4 °C
for 30 min. Subsequently, the supernatant was diluted 1:9 with cold 1:4 acetone:methanol. The solution
was placed at —20 °C and allowed to precipitate overnight (>12 h). The solution was subsequently
centrifuged at 14,000 RCF, 4 °C for 30 min, and the supernatant was discarded. The pellet was left
to evaporate at room temperature for 1 h, then resolubilised in purified water. The total protein
concentration was then measured using a Thermo Scientific Nanodrop 2000 Spectrophotometer in
A280 mode (Wilmington, DE, USA). Extracted venom proteins were stored at —80 °C.

4.2. Cardiovascular Assays

The effect of venom on blood pressure and heart rate was determined using the previously
described anesthetised rat preparation [34]. This procedure was approved by the Monash Animal
Research Platform (MARP) Animal Ethics Committee, Monash University, Australia MARP /2014/97
(approved in December 2014).

4.3. Neurotoxicity Assays

The in vitro neurotoxicity of venoms was tested using the chick biventer cervices nerve-muscle
preparation as described previously [35,36]. This procedure was approved by the Monash Animal
Research Platform (MARP) Animal Ethics Committee, Monash University, Australia MARP /2014/97
(approved in December 2014).

Acknowledgments: This research was funded by the Australian Research Council and the Herman Slade
Foundation. Kate Baumann, Jordan Debono, and Ivan Koludarov were the recipients of post-graduate scholarships
from the University of Queensland. Nicholas R. Casewell was funded by a UK Natural Environment Research
Council Postdoctoral Research Fellowship. Scott C Cutmore was funded by an ABRS National Taxonomy
Research Grant.

Author Contributions: B.G.F. and S.K. conceived and designed the experiments; H.H., K.B.,, N.R.C,, S.AA.,
Jam.D,, LK, Jor.D., S.C.C.,, NW.R, TN.WJ,, R].,, W.C.H,, B.G.F. and S.K. performed the experiments; H-H., K.B.,
N.RC,S.AA,Jam.D, LK, Jor.D,S.C.C, NWR, TN.WJ,R]J., W.CH., B.GF and SK. analyzed the data; HH.,
K.B.,,N.R.C,,S.A.A., Jam.D,, LK., Jor.D., S.C.C., N\W.R.,, TN.W]., R.]J., W.C.H., B.G.E. and S.K. all contributed to the
writing of the paper.

Conflicts of Interest: The authors declare no conflict of interest and the founding sponsors had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in
the decision to publish the results.



Toxins 2017, 9, 67 90f 10

References

1. Church, J.E.; Hodgson, W.C. The pharmacological activity of fish venoms. Toxicon 2002, 40, 1083-1093.
[CrossRef]

2. Smith, W.L.; Wheeler, W.C. Venom evolution widespread in fishes: A phylogenetic road map for the
bioprospecting of piscine venoms. |. Hered. 2006, 97, 206-217. [CrossRef] [PubMed]

3. Smith, L.; Stern, J.H.; Girard, M.G.; Davis, M.P. Evolution of venomous cartilaginous and ray-finned fishes.
Integr. Comp. Biol. 2016, 56, 950-961. [CrossRef] [PubMed]

4. Wright, J. Diversity, phylogenetic distribution, and origins of venomous catfishes. BMC Ewvol. Biol. 2009, 9.
[CrossRef] [PubMed]

5. Baumann, K.; Casewell, N.R.; Ali, S.A.; Jackson, T.N.W.; Vetter, I.; Dobson, ].S.; Cutmore, S.C.; Nouwens, A.;
Lavergne, V.; Fry, B.G. A ray of venom: Combined proteomic and transcriptomic investigation of fish venom
composition using barb tissue from the blue-spotted stingray (Neotrygon kuhlii). ]. Proteom. 2014, 109, 188-198.
[CrossRef] [PubMed]

6. King, G.F. Venoms as a platform for human drugs: Translating toxins into therapeutics. Expert Opin. Biol. Ther.
2011, 11, 1469-1484. [CrossRef] [PubMed]

7. Helfman, G.S. The Diversity of Fishes: Biology, Evolution, and Ecology; Blackwell: Oxford, UK, 2009.

8.  Casewell, N.R,; Wiister, W.; Vonk, FJ.; Harrison, R.A.; Fry, B.G. Complex cocktails: The evolutionary novelty
of venoms. Trends Ecol. Evol. 2013, 28, 219-229. [CrossRef] [PubMed]

9. Borondo, J.C.; Sanz, P; Nogué, S.; Poncela, ]J.L.; Garrido, P.; Valverde, J.L. Fatal weeverfish sting.
Hum. Exp. Toxicol. 2001, 20, 118-119. [CrossRef] [PubMed]

10. Church, J.E.; Hodgson, W.C. Stonefish (Synanceia trachynis) antivenom: In vitro efficacy and clinical use.
J. Toxicol. Toxin Rev. 2003, 22, 69-76. [CrossRef]

11. Sivan, G. Fish venom: pharmacological features and biological significance. Fish Fish 2009, 10, 159-172.
[CrossRef]

12.  Smith, J. A case of poisoning by the stonefish, Synanceja verrucosa. Copeia 1951. [CrossRef]

13.  Williamson, J.; Fenner, PJ.; Burnett, ] W.; Rifkin, J.F. Venomous and Poisonous Marine Animals: A Medical and
Biological Handbook; UNSW Press: Kensington, NSW, Australia, 1996.

14.  Andrew, M.E,; Cyril, ER; Santosh, P.; Kitmun, H.; Christine, A.O.; Kelly, L.W.; Michelle, A.D.; Wayne, C.H.;
Jamie, S.; Peter, K.D.; Rodney, K.T.; James, C.W.; Sheena, M. Stonefish toxin defines an ancient branch of the
perforin-like superfamily. Proc. Natl. Acad. Sci. 2015, 112. [CrossRef]

15. Church, J.E.; Hodgson, W.C. Dose-dependent cardiovascular and neuromuscular effects of stonefish
(Synanceja trachynis) venom. Toxicon 2000, 38, 391-407. [CrossRef]

16. Ghadessy, FJ.; Chen, D.; Kini, R M.; Chung, M.C.; Jeyaseelan, K.; Khoo, H.E.; Yuen, R. Stonustoxin is a novel
lethal factor from stonefish (Synanceja horrida) venom. cDNA cloning and characterization. J. Biol. Chem.
1996, 271, 25575-25581. [PubMed]

17.  Khoo, H.; Yuen, R.; Poh, C.; Tan, C. Biological activities of Synanceja horrida (stonefish) venom. Natural Toxins
1992, 1, 54-60. [CrossRef] [PubMed]

18.  Khoo, H.E. Bioactive proteins from stonefish venom. Clin. Exp. Pharmacol. Physiol. 2002, 29, 802-806.
[CrossRef] [PubMed]

19. Low, KS.Y,; Gwee, M.E.; Yuen, R.; Gopalakrishnakone, P.; Khoo, H.E. Stonustoxin: A highly potent
endothelium-dependent vasorelaxant in the rat. Toxicon 1993, 31, 1471-1478. [CrossRef]

20. Poh, C.H,; Yuen, R.; Khoo, H.E.; Chung, M.; Gwee, M.; Gopalakrishnakone, P. Purification and partial
characterization of stonustoxin (lethal factor) from Synanceja horrida venom. Comp. Biochem. Physiol. B
Comp. Biochem. 1991, 99, 793-798. [CrossRef]

21. Magalhaes, G.S.; Junqueira-de-Azevedo, I.L.M.; Lopes-Ferreira, M.; Lorenzini, D.M.; Ho, PL,;
Moura-da-Silva, A.M. Transcriptome analysis of expressed sequence tags from the venom glands of the fish
Thalassophryne nattereri. Biochimie 2006, 88, 693—699. [CrossRef] [PubMed]

22. Hopkins, B.J.; Hodgson, W.C. Cardiovascular studies on venom from the soldierfish (Gymnapistes marmoratus).
Toxicon 1998, 36, 973-983. [CrossRef]

23. Saunders, PR. Venom of the stonefish Synanceja verrucosa. Science 1959, 129, 2272-2274. [CrossRef]

24. Saunders, PR.; Taylor, P.B. Venom of the lionfish Pterois volitans. Am. . Physiol. 1959, 197, 437-440. [PubMed]


http://dx.doi.org/10.1016/S0041-0101(02)00126-5
http://dx.doi.org/10.1093/jhered/esj034
http://www.ncbi.nlm.nih.gov/pubmed/16740627
http://dx.doi.org/10.1093/icb/icw070
http://www.ncbi.nlm.nih.gov/pubmed/27375272
http://dx.doi.org/10.1186/1471-2148-9-282
http://www.ncbi.nlm.nih.gov/pubmed/19961571
http://dx.doi.org/10.1016/j.jprot.2014.06.004
http://www.ncbi.nlm.nih.gov/pubmed/24946716
http://dx.doi.org/10.1517/14712598.2011.621940
http://www.ncbi.nlm.nih.gov/pubmed/21939428
http://dx.doi.org/10.1016/j.tree.2012.10.020
http://www.ncbi.nlm.nih.gov/pubmed/23219381
http://dx.doi.org/10.1191/096032701668435659
http://www.ncbi.nlm.nih.gov/pubmed/11327512
http://dx.doi.org/10.1081/TXR-120019021
http://dx.doi.org/10.1111/j.1467-2979.2008.00309.x
http://dx.doi.org/10.2307/1439098
http://dx.doi.org/10.1073/pnas.1507622112
http://dx.doi.org/10.1016/S0041-0101(99)00169-5
http://www.ncbi.nlm.nih.gov/pubmed/8810331
http://dx.doi.org/10.1002/nt.2620010111
http://www.ncbi.nlm.nih.gov/pubmed/1364268
http://dx.doi.org/10.1046/j.1440-1681.2002.03727.x
http://www.ncbi.nlm.nih.gov/pubmed/12165046
http://dx.doi.org/10.1016/0041-0101(93)90212-2
http://dx.doi.org/10.1016/0305-0491(91)90143-2
http://dx.doi.org/10.1016/j.biochi.2005.12.008
http://www.ncbi.nlm.nih.gov/pubmed/16488069
http://dx.doi.org/10.1016/S0041-0101(98)00009-9
http://dx.doi.org/10.1126/science.129.3344.272-a
http://www.ncbi.nlm.nih.gov/pubmed/14441961

Toxins 2017, 9, 67 10 of 10

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Auddy, B.; Alam, M.L; Gomes, A. Pharmacological actions of the venom of the Indian catfish (Plofosus canius
Hamilton). Indian ]. Med. Res. 1994, 99, 47-51. [PubMed]

Carlson, R.W.; Schaeffer, R.C.; Whigham, H.; Weil, M.H.; Russell, EE. Some pharmacological properties of
the venom of the scorpionfish Scorpaena guttata—II. Toxicon 1973, 11, 167-180. [CrossRef]

Church, J.E.; Hodgson, W.C. Adrenergic and cholinergic activity contributes to the cardiovascular effects of
lionfish (Pterois volitans) venom. Toxicon 2002, 40, 787-796. [CrossRef]

Carlson, RW,; Schaeffer, R.C.; La Grange, R.G.; Roberts, C.M.; Russell, F.E. Some pharmacological properties
of the venom of the scorpionfish Scorpaena guttata—I. Toxicon 1971, 9, 379-391. [CrossRef]

Rodrigues, R.J. Pharmacology of South American freshwater stingray venom (Potamotrygon motoro).
Trans. N. Y. Acad. Sci. 1972, 34, 677-686. [CrossRef] [PubMed]

Hopkins, B.J.; Hodgson, W.C.; Sutherland, S.K. Evidence for adrenergic and tachykinin activity in venom of
the stonefish (Synanceja trachynis). Toxicon 1996, 34, 541-554. [CrossRef]

Saunders, P.R. Pharmacological and chemical studies of the venom of the stonefish (genus Synanceja) and
other scorpion fishes. Ann. N. Y. Acad. Sci. 1960, 90, 798-804. [CrossRef] [PubMed]

Barber, C.M.; Isbister, G.K.; Hodgson, W.C. Classic toxin review: Alpha neurotoxins. Toxicon 2013, 66, 47-58.
[CrossRef] [PubMed]

Mubhuri, D.; Karmakar, S.; Dasgupta, S.C.; Nagchaudhuri, A.K.; Gomes, A. Pharmacological studies on
the venomous spotted butterfish (Scatophagus argus Linn) sting extract on experimental animals. Indian |.
Exp. Biol. 2004, 42, 461-467. [PubMed]

Chaisakul, J.; Isbister, G.K.; O’Leary, M.A.; Parkington, H.C.; Smith, A.I; Hodgson, W.C.; Kuruppu, S.
Prothrombin activator-like toxin appears to mediate cardiovascular collapse following envenoming by
Pseudonaja textilis. Toxicon 2015, 102, 48-54. [CrossRef] [PubMed]

Rusmili, M.R.; Yee, T.T.; Mustafa, M.R.; Hodgson, W.C.; Othman, I. Isolation and characterization of a
presynaptic neurotoxin P-elapitoxin-Bfla from Malaysian Bungarus fasciatus venom. Biochem. Pharmacol.
2014, 91, 409-416. [CrossRef] [PubMed]

Silva, A.; Kuruppu, S.; Othman, I.; Goode, R.J.; Hodgson, W.C.; Isbister, G.K. Neurotoxicity in Sri Lankan
Russell’s viper (Daboia russelii) envenoming is primarily due to Ul-viperitoxin-Drla, a pre-synaptic
neurotoxin. Neurotox. Res. 2017, 31, 11-19. [CrossRef] [PubMed]

@ © 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses /by /4.0/).


http://www.ncbi.nlm.nih.gov/pubmed/8163302
http://dx.doi.org/10.1016/0041-0101(73)90078-0
http://dx.doi.org/10.1016/S0041-0101(01)00285-9
http://dx.doi.org/10.1016/0041-0101(71)90137-1
http://dx.doi.org/10.1111/j.2164-0947.1972.tb02721.x
http://www.ncbi.nlm.nih.gov/pubmed/4509224
http://dx.doi.org/10.1016/0041-0101(96)00012-8
http://dx.doi.org/10.1111/j.1749-6632.1960.tb26423.x
http://www.ncbi.nlm.nih.gov/pubmed/13746804
http://dx.doi.org/10.1016/j.toxicon.2013.01.019
http://www.ncbi.nlm.nih.gov/pubmed/23416229
http://www.ncbi.nlm.nih.gov/pubmed/15233469
http://dx.doi.org/10.1016/j.toxicon.2015.05.001
http://www.ncbi.nlm.nih.gov/pubmed/25959508
http://dx.doi.org/10.1016/j.bcp.2014.07.001
http://www.ncbi.nlm.nih.gov/pubmed/25064255
http://dx.doi.org/10.1007/s12640-016-9650-4
http://www.ncbi.nlm.nih.gov/pubmed/27401825
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Effects of Crude Venoms on the Cardiovascular System 
	Effects of Crude Venoms on the Chick Biventer Cervicis Nerve-Muscle (CBCNM) Preparation 

	Discussion 
	Materials and Methods 
	Crude Venom 
	Sample Collection and Storage 
	Protein Extraction 

	Cardiovascular Assays 
	Neurotoxicity Assays 


