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ABSTRACT

While some US populations of the Mohave rattlesnake (Crotalus scutulatus scutulatus) are infamous for being
potently neurotoxic, the Mexican subspecies C. s. salvini (Huamantlan rattlesnake) has been largely unstudied
beyond crude lethality testing upon mice. In this study we show that at least some populations of this snake are
as potently neurotoxic as its northern cousin. Testing of the Mexican antivenom Antivipmyn showed a complete
lack of neutralisation for the neurotoxic effects of C. s. salvini venom, while the neurotoxic effects of the US
subspecies C. s. scutulatus were time-delayed but ultimately not eliminated. These results document unrecognised
potent neurological effects of a Mexican snake and highlight the medical importance of this subspecies, a finding
augmented by the ineffectiveness of the Antivipmyn antivenom. These results also influence our understanding
of the venom evolution of Crotalus scutulatus, suggesting that neurotoxicity is the ancestral feature of this species,
with the US populations which lack neurotoxicity being derived states.

1. Introduction

The Mohave rattlesnake, Crotalus scutulatus scutulatus Kennicott,
1861 (Kennicott, 1861), is a medically important snake that inhabits
the southwestern United States in the arid regions of the Mohave, So-
noran, and Chihuahuan Deserts. Its distribution across the southwestern
United States includes southern California, southern Nevada, and ex-
treme southwestern Utah down into western and southern Arizona,
extreme southwestern New Mexico, and trans-Pecos Texas (Campbell
et al., 2004). In Mexico these snakes are documented from northern
Sonora, eastward throughout most of Chihuahua, into Coahuila and
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western Nuevo Ledn, south through a large portion of Durango and
Zacatecas, extreme southwestern Tamaulipas, western San Luis Potosi,
Aguascalientes and northeastern Jalisco south into northern Guana-
juato (Campbell et al., 2004). It is a medium-sized rattlesnake, Klauber
(1997) listing his largest measured male at 1231 mm (Klauber, 1997)
while Mrinalini et al. 2015 documents a marginally larger size of
1236 mm. Cardwell (2016 and references within) refers to C. s. scutu-
latus as a dietary generalist that takes numerous small mammals, li-
zards, and other small vertebrates, with one California population
eating a particularly high percentage (75%) of heteromyid rodents
(Cardwell, 2016).
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Venom from southwestern United States populations of C. s. scutu-
latus has long drawn the interest of researchers (Nair et al., 1976; Glenn
and Straight, 1978; Nair et al., 1980; Ho and Lee, 1981; Glenn et al.,
1983; Schwartz et al., 1984; Schwartz and Bieber, 1985; Henderson and
Bieber, 1986; Glenn and Straight, 1989; Wilkinson et al., 1991; Rael
et al., 1993; Wooldridge et al., 2001; Sanchez et al., 2005) and laymen
alike. Amongst the latter, largely due to popular media coverage of the
snakes' toxicity, C. s. scutulatus origins, resurrection capabilities, and
reported venom toxicity have reached mythological proportions (Co-
chran, pers. obs). Geographic venom variation is documented in C. s.
scutulatus and, historically, two distinct forms that showed an inverse
relationship between more toxic neurotoxic and less potent haemor-
rhagic/proteolytic activity were recognised (Glenn and Straight, 1978;
Glenn et al., 1983), with populations producing neurotoxic effects and
lower intraperitoneal (i.p.) LDsq values designated as Type A and those
with haemorrhagic/proteolytic activity and higher i.p. LDso values
designated as Type B (Glenn and Straight, 1978). The neurotoxicity
observed in Type A venoms is largely attributed to the expression of a
presynaptic neurotoxin called Mojave toxin (MT) (Gopalakrishnakone
et al., 1980; Borja et al., 2014) while the haemorrhagic/proteolytic
activity of Type B venoms is induced by PI and PIII SVMPs (Massey
et al,, 2012). A third venom phenotype (A + B), comprising both
neurotoxic (MT) and proteolytic/haemorrhagic activities, was even-
tually discovered in individuals occupying the western and southern
regions of those expressing Type B venoms (Glenn and Straight, 1989;
Wilkinson et al., 1991). Recently, individuals with a venom composi-
tion dominated by myotoxin-A have been discovered in the transition
zone between the A and B phenotypes, and Massey et al. (2012) pro-
posed the creation of an additional three venom phenotypes (Type
A + M, Type B + M, Type A + B + M) to account for the varying ex-
pression of this protein family (Massey et al., 2012).

The Huamantlan rattlesnake, Crotalus scutulatus salvini Giinther,
1895 (Giinther, 1885-19025), ranges from extreme eastern Guanajuato
through Querétaro, Hidalgo, possibly northern México, through Tlax-
cala, and northern Puebla into western Veracruz where it is restricted to
elevations above 1800 m (Campbell et al., 2004). C. s. salvini inhabits
the open, high interior plains within the Temperate Pine-Oak and
Mesquite-Grassland vegetation areas defined by Leopold (1950), with
lava beds known to provide prime habitat (Leopold, 1950; Armstrong
and Murphy, 1979). Two specimens were found to contain the remains
of mammals upon examination (Klauber, 1997).

The venom of the Huamantlan rattlesnake, C. s. salvini, has received
far less attention in scientific literature to date (Nair et al., 1976; Glenn
and Straight, 1978; Nair et al., 1979; Nair et al., 1980; Glenn et al.,
1983; Zepeda et al., 1985; Henderson and Bieber, 1986). Glenn and
Straight (1978) tested the venom of a single specimen from unlisted
locality and found it to have a comparatively low intraperitoneal LDs,
value (0.18 mg/kg) in laboratory mice, with values just above the
average of two Utah, USA locality Type A (neurotoxic) C. s. scutulatus
specimens (0.11 mg/kg, range 0.09-0.12) and below that of 28 Type A
California-Arizona specimens (0.24 mg/kg, range 0.13-0.54) (Glenn
and Straight, 1978). Glenn et al. (1983) continued to investigate i.p.
LDs, values of C. s. salvini and C. s. scutulatus, though this time with an
increased sample size of C. s. salvini (three individuals from Vera Cruz,
Mexico). While the i.p. LDsq values of C. s. salvini venom (0.30 mg/kg,
range 0.22-0.40) were higher compared to that of their previous find-
ings, they again found the mean to be close to that of the Type A C. s.
scutulatus venom tested (0.28 mg/kg, range 0.22-0.46) (obtained from
six specimens: five from extreme southeastern Arizona and one from the
northern city limits of Tucson, Arizona) (Glenn et al., 1983). In con-
trast, eleven venom samples of C. s. scutulatus collected in five localities
at the South of Coahuila and Northeast of Durango—populations with
Type B venom—presented high intravenous (i.v.) LDsq value (1.6 mg/
kg, range 0.71-2.5) (Borja et al., 2014).

Geographic venom variation is well documented amongst members
of the Viperidae (Jayanthi and Gowda, 1988, Daltry et al., 1996a,
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Fig. 1. Effect of C. s. scutulatus and C. s. salvini venoms in the absence and presence of
Antivipmyn antivenom (3.33 pL:1 ug venom) on (a) nerve-mediated twitches of the chick
biventer nerve-muscle preparation and (b) responses to exogenous ACh (1 mM), CCh
(20 uM) and KCl (40 mM), compared to initial response, n = 3.

1996b, Saravia et al., 2002, Nunez et al., 2009, Calvete et al., 2011),
including members of the genus Crotalus (Glenn et al., 1983; Minton
and Weinstein, 1986; Straight et al., 1991; Wilkinson et al., 1991;
Forstner et al., 1997; Saravia et al., 2002; Sunagar et al., 2014), and is
likely the norm rather than the exception. While venom variation be-
tween snake populations is becoming increasingly well-characterised
from a functional and molecular perspective, the impact of such var-
iation from a clinical perspective receives comparatively less research
attention.

In our study we examined three populations of C. s. scutulatus and
the subspecies C. s. salvini for their functional and proteomic variations
in venom composition, and the relative impact this has upon the neu-
tralising capacity of the antivenom for these medically important
snakes.

2. Materials and methods
2.1. Venoms

Venoms from three adult male specimens for each venom were
pooled to minimise individual variation. Collections localities for C.
scutulatus scutulatus were Cochise Co. AZ, Culberson Co., TX, and Pima,
Co. AZ. C. scutulatus salvini specimens were collected from unrelated
captive animals of unknown locality.

2.2. Neurotoxicity studies

Male chicks (4-10 days) were killed by CO, and exsanguination.
Both chick biventer cervicis nerve muscle preparations were isolated
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Fig. 2. Differential ability to degrade the alpha, beta and gamma chains of fibrinogen.

and mounted on wire tissue holders under 1 g resting tension in 5 mL
organ baths containing Krebs solution (NaCl, 118.4 mM; KCI, 4.7 mM;
MgSO4, 1.2 mM; KH,PO,4, 1.2 mM; CaCl,, 2.5 mM; NaHCO;, 25 mM
and glucose, 11.1 mM), maintained at 34 °C and bubbled with 95% O,/
5% CO,. Indirect twitches were evoked by electrical stimulation of the
motor nerve (supramaximal voltage, 0.2 ms, 0.1 Hz) using a Grass Sgg
stimulator (Grass Instruments, Quincy, MA). p-Tubocurarine (10 uM)
was added, and subsequent abolition of twitches confirmed selective
stimulation of the motor nerve, after which thorough washing with
Krebs solution was applied to re-establish twitches. In the absence of
electrical stimulation, contractile responses to acetylcholine (ACh;
1 mM for 30 s), carbachol (CCh; 20 uM for 60 s) and potassium (KCl;
40 mM for 30 s) were obtained prior to the addition of venom and at the
conclusion of the experiment. The preparation was equilibrated for
30 min or until a stable twitch tension was observed prior to the ad-
dition of venom. Venoms were left in contact with the preparation for a
maximum of 3h to test for slow developing effects. Efficacy of
Antivipmyn (Instituto Bioclon, Mexico; 10 uL/mL) was assessed via a
10 minute pre-incubation with the chick biventer 5 mL organ bath
preparation in the organ bath prior to the administration of venom.
Twitch tension was measured from the baseline in two minute in-
tervals. Responses were expressed as a percentage of twitch tension
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prior to the addition of the venom. Contractile responses to agonists
obtained at the conclusion of the experiment were measured and ex-
pressed as a percentage of the response obtained prior to the addition of
venom. The time taken to inhibit 90% of twitch contractions (tgo) was
measured as a quantitative means of measuring neurotoxicity. Values
for tgo were measured by the time elapsed to reach 10% twitch tension
amplitude following addition of venom. Where indicated, a two-way
analysis of variance (ANOVA) followed by a Bonferroni-corrected post-
hoc test was used to determine statistical significance of responses.
Statistical analysis was performed using the Prism 5 (GraphPad
Software, San Diego, CA, USA) software package. Unless otherwise
indicated, data are expressed as mean *+ S.E.M.

These experiments were approved by the SOBS-B Monash University
Animal Ethics Committee.

2.3. Fibrinogen degradation studies

1 mm 12% SDS-PAGE gels were prepared using the following recipe
for resolving gel layer: 3.3 mL deionised H,O, 2.5 mL 1.5 M Tris-HCl
buffer pH 8.8 (Tris - Sigma-Aldrich, St. Louis, MO, USA; HCI - Univar,
Wilnecote, UK), 100 uL 10% SDS (Sigma-Aldrich, St. Louis, MO, USA),
4 mL 30% acrylamide mix (Bio-Rad, Hercules, CA, USA), 100 pL 10%
APS (Bio-Rad, Hercules, CA, USA), 4 uL. TEMED (Bio-Rad, Hercules, CA,
USA); and stacking gel layer: 1.4 mL deionised H,0, 250 pL 0.5 M Tris-
HCI buffer pH 6.8, 20 uL 10% SDS (Sigma-Aldrich, St. Louis, MO, USA),
330 mL 30% acrylamide mix (Bio-Rad, Hercules, CA, USA), 20 pL 10%
APS (Bio-Rad, Hercules, CA, USA), 2 uL. TEMED (Bio-Rad, Hercules, CA,
USA). 10 x gel running buffer was prepared using the following recipe:
250 mM Tris (Sigma-Aldrich, St. Louis, MO, USA), 1.92 M glycine (MP
Biomedicals), 1% SDS (Sigma-Aldrich, St. Louis, MO, USA), pH 8.3.

Lyophilised human fibrinogen was reconstituted to a concentration
of 2 mg/mL in isotonic saline solution, flash frozen in liquid nitrogen,
and stored at — 80 °C until use. Freeze-dried venom was reconstituted
in deionised H,O and concentrations were measured using a Thermo
Scientific™ NanoDrop 2000. Assay concentrations were a 1:10 ratio of
venom:fibrinogen, in comparison to 1:5 ratios used in other snake
venom testing (Weldon and Mackessy, 2010). The following was con-
ducted in triplicate for each venom: Five “secondary” aliquots con-
taining 10 uL buffer (5 uL of 4 X Laemmli sample buffer (Bio-Rad,
Hercules, CA, USA), 5 uL deionised H,O, 100 mM DTT (Sigma-Aldrich,
St. Louis, MO, USA)) were prepared. A “primary” aliquot of fibrinogen
(volume/concentration as per the above) was warmed to 37 °C in an
incubator. 10 uL. was removed from the primary aliquot (“0 minute
incubation” fibrinogen control) and added to a secondary aliquot,
pipette mixed, and boiled at 100 °C for 4 min. 4 pug (dry weight) of
venom was then added to the primary aliquot of fibrinogen (amounting
to 0.1 mg/mL of venom and 1 mg/mL of fibrinogen in 40 uL total vo-
lume), pipette mixed, and immediately returned to the incubator. At
each incubation time period (1 min, 5 min, 20 min, and 60 min), 10 pL
was taken from the primary aliquot, added to a secondary aliquot,
pipette mixed, and boiled at 100 °C for 4 min. The secondary aliquots
were then loaded into the gels and were run in 1 X gel running buffer at
room temperature for 20 min at 90 V (Mini Protean3 power-pack from
Bio-Rad, Hercules, CA, USA) and then 120 V until the dye front neared
the bottom of the gel. Gels were stained with colloidal coomassie
brilliant blue G250 (34% methanol (VWR Chemicals, Tingalpa, QLD,
Australia), 3% orthophosphoric acid (Merck, Darmstadt, Germany),
170 g/L ammonium sulfate (Bio-Rad, Hercules, CA, USA), 1 g/L coo-
massie blue G250 (Bio-Rad, Hercules, CA, USA)), and destained in
deionised H50.

2.4. Enzymatic substrate cleavage studies
A working stock solution of freeze dried venom was reconstituted in

a buffer containing 50% deionised H,0/50% glycerol (> 99.9%,
Sigma) at a 1:1 ratio to preserve enzymatic activity and reduce enzyme
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degradation with the final venom concentration of 1 mg/mL, and then
stored at — 20 °C. For assessing the PLA, activity a fluorescence sub-
strate assay was used (EnzChek® Phospholipase A, Assay Kit,
ThermoFisher Scientific). Venom solution (0.1 pg in dry venom weight)
was brought up to 12.5 L in 1 X PLA, reaction buffer (250 mM Tris-
HCL, 500 mM NaCl, 5 mM CaCl,, pH 8.9) and plated out in triplicates
on a 384 well plate. Triplicates were measured by adding 12.5 pL
quenched 1 mM EnzChek® Phospholipase A, substrate per well (total
volume 25 pL/well) over 100 cycles at an excitation of 485 nm and
emission of 520nm, using a Fluoroskan Ascent™ Microplate
Fluorometer (ThermoFisher Scientific). The negative control consisted
of PLA, reaction buffer and substrate only. For testing on RDES sub-
strates, venom solutions (0.1 pug in dry venom weight) were plated in
triplicates on a 384 well plate and measured by adding 90 pL quenched
fluorescent substrate per well (total volume 100 pL/well; 10 uL/5 mL
enzyme buffer - 150 mM NaCl, 50 mM Tri-HCl, 5 mM CaCl,, pH 7.4,
Fluorogenic Peptide Substrate, R & D systems Cat#ES0011,
Minneapolis, Minnesota). Fluorescence was monitored (excitation at
390 nm and emission at 460 nm for RDES011; 320/405 for all other
substrates) over 400 min or until activity ceased.

2.5. LDs, studies

Five groups of eight mice (18-20 g, Male and Female BALB/c) for
each venom were used. The endpoint of lethality of the mice was de-
termined after 48 h. The venom was dissolved in 0.85% saline at the
highest test dose per mouse. Serial dilutions of 2-fold using saline were
made to obtain four additional concentrations. The venom lethality was
found by injecting 0.2 mL of venom into the tail veins. The injections
were administered using a 1-mL syringe fitted with a 30-gauge, 0.5-inch
needle. Saline controls were used. The LDs, was calculated by the
Spearman-Karber method. This protocol was approved by the Texas
A&M University-Kingsville Institutional Animal Care and Use
Committee (IACUC protocol #: 2015-12-09-A5).

2.6. Proteomic studies

In order to establish the proteomic variations, 1D gradient gels were
run under both reducing and non-reducing conditions using the man-
ufacturer (Bio-Rad) protocol. Gels were prepared as follows: 0.05 mL
deionised H,0, 2.5 mL 30% acrylamide mix, 1.5 mL 1.0 M Tris-HCI,
pH 8.45, 0.480 mL glycerol, 20 uL. 10% APS, 2 pL. TEMED (spreading
gel); 0.760 mL deionised H,O, 0.760 mL 30% acrylamide mix,
0.760 mL 1.0 M Tris-HCL, pH 8.45, 15 pL 10% APS, 2 uL. TEMED (spacer
gel); 1.560 mL deionised H,O, 0.340 mL 30% acrylamide mix,
0.630 mL 1.0 M Tris-HCl, pH 8.45, 15uL 10% APS, 2puL TEMED
(stacking gel). Spreading gel was cast first. After it was set the spacer
gel was slowly layered atop of it, and after spacer gel was set the
stacking gel was layered atop of it. Running buffers were: 0.2 M Tris-
HCI, pH 8.9 (anode buffer); 0.1 M Tris-tricine-HCl pH 8.45. The gels
were run at 100V for 3 h at room temperature. 30 pg of venom was
reconstituted in Tricine loading buffer (Bio-Rad) with 10 mM DTT
added to provide reduced conditions. Gels were stained overnight with
colloidal Coomassie brilliant blue G250 (34% methanol, 3% phosphoric
acid, 170 g/L ammonium sulfate, 1 g/L. Coomassie blue G250). After
the staining was complete, water was used to remove excess dye.

In order to identify the toxin types present, digested gel spot sam-
ples were processed using an Agilent Zorbax stable bond C18 column
(2.1 mm by 100 mm, 1.8 ym particle size, 300 A pore size) at a flow
rate of 400 puL per minute and a gradient of 1-40% solvent B (90%
acetonitrile, 0.1% formic acid) in 0.1% formic acid over 15 min or
4 min for shotgun samples and 2D-gel spots respectively on a Shimadzu
Nexera UHPLC coupled with an AB SCIEX 5600 Triple TOF mass
spectrometer. MS2 spectra are acquired at a rate of 20 scans per second
with a cycle time of 2.3 s and optimised for high resolution. Precursor
ions were selected between 80 and 1800 m/z with a charge state of 2-5
and of an intensity of at least 120 counts per second with a precursor
selection window of 1.5 Da. The isotopes within 2 Da were excluded for
MS2. MS2 spectra were searched against known translated
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transcriptome libraries or UniProt database with Proteinpilot v4.0
(ABSciex) using a thorough identification search, specifying iodoace-
tamide as an alkylation method, trypsin digestion, and allowing for
biological and chemical modifications (ethanolyl C or deamidated N in
particular) and amino acid substitutions, including artifacts induced by
the preparation or analysis processes. This was done to maximize the
identification of protein sequences.

3. Results and discussion

Venoms of C. s. scutulatus (Cochise Co., AZ and Culberson Co., TX)
and C. s. salvini caused rapid blockade of nerve-mediated twitches in the
chick biventer cervicis nerve-muscle preparation at the 3 ug/mL con-
centration (Fig. 1). The two C. s. salvini samples were congruent in this
respect. In contrast, C. s. scutulatus (Pima Co., AZ) had no appreciable
effect even at 10 pg/mL. All three neurotoxic venoms did not sig-
nificantly affect the contractile responses to exogenous agonists acet-
ylcholine (ACh; 1 mM), carbachol (CCh; 20 mM) and potassium
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Fig. 5. 1D gel variation with toxin types identified by MS/MS. Css-Cu = C. s. scutulatus
(Culberson Co., TX), Css-Pi = C. s. scutulatus (Pima Co., AZ), Css-Co = C. s. scutulatus
(Cochise Co., AZ), and Csv = C. scutulatus salvini (locality unknown).

chloride (KCl; 40 mM) (Fig. 1, P > 0.05, n = 3), indicating that these
neurotoxins act on the presynaptic site.

Antivipmyn antivenom (16.6 pL:1 pg venom) did not eliminate the
action of the two neurotoxic C. s. scutulatus venoms (from Cochise Co.,
AZ, and Culberson Co., TX), though delays in the induction of the ve-
noms' neurotoxic effects were generated by the addition of the anti-
venom (Fig. 1). No effect upon the neurotoxicity of the C. s. salvini
venom was evident (Fig. 1). C. s. scutulatus (Cochise Co., AZ) had a t90
of 25.7 = 1.5 which antivenom shifted to 47 + 1.4, C. s. scutulatus
(Culberson Cu., TX) had a t90 of 22.3 which antivenom shifted to
39.6 + 7.6, and C. s. salvini had a t90 of 30.6 = 4.16, which in the
presence of antivenom was unchanged (30.3 * 1.5). This ratio
(16.6 pL:1 pug venom) is considerably higher than the stated potency of
the antivenom in neutralisation tests measured against lethality pro-
duced by the “challenge dose” of C. simus venom (10 pL antivenom
neutralising 5.7-6.5 pug venom) (Benard-Valle et al., 2015).

Consistent with the variance in neurotoxicity, C. s. scutulatus (Pima
Co., AZ) displayed a dramatically lower level of lethality in comparison
to the other three venoms, having an LDsq of 4.7 mg/kg (Cantu et al.,
2017) compared to 0.998 mg/kg for C. s. scutulatus (Cochise Co., AZ),
0.493 mg/kg for C. s. scutulatus (Culberson Co., TX), and 0.648 mg/kg
for C. s. salvini. Consistent with the C. s. scutulatus population (Cul-
berson Co., TX) demonstrating the most potent neurotoxicity (Fig. 1), it
was also the population with the highest lethality in the LDs, tests.

Differential fibrinogenolytic activity was evident in the fibrinogen
cleavage tests. While all venoms showed some activity in degrading
fibrinogen chains, only C. s. scutulatus (Pima Co., AZ), was potent in
rapidly degrading both the Aa and B chains (Figs. 2 and 3). Only C. s.
scutulatus (Culberson Co., TX) was limited in its activity on the Bf
chain. The variation between all snakes in their degradation of the Aa-
chain was significant (P < 0.001), as were the variations in degrading
the Bp-chain with the exception of C. s. scutulatus (Pima Co., AZ) vs C. s.
salvini. There was an inverse relationship between neurotoxicity and
fibrinogen chain destruction for C. s. scutulatus (Culberson Co., TX) and
C. s. scutulatus (Pima Co., AZ), suggesting that these venoms are
dominated by toxins targeting the nerves as opposed to those targeting
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the haemostatic system. However, such a relationship was not evident
for the venom of C. s. scutulatus (Cochise Co., TX) or C. s. salvini. Each
venom possessed both strong neurotoxic and fibrinogenolytic activities,
with the former having moderate fibrinogen Aa chain destruction ac-
tivity (0.55 out of 1 relative activity) and strong Bf3 chain activity (0.80)
and the latter possessing strong relative activity on both chains (0.73
and 0.94, respectively), relative to the normalised (1) value for C. s.
scutulatus (Pima Co., AZ) on both chains (Figs. 2 and 3), while having
neurotoxicity similar in potency to that of C. s. scutulatus (Cochise Co.,
TX) in impeding nerve conductance (Fig. 1).

Other enzymatic tests also produced variation in activity between
venoms. In the PLA, assay, C. s. salvini displayed extremely high levels
of activity compared to each of the C. s. scutulatus venoms, with C. s.
scutulatus (Pima Co., AZ) being notable for exhibiting negligible activity
(Fig. 4). C. s. scutulatus (Pima Co., AZ) was the only venom active upon
the metalloprotease substrate RDSEOO1 and also displayed higher ac-
tivity upon the metalloprotease substrate RDSE005 than each of the
other venoms (Fig. 4). C. s. scutulatus (Cochise Co., TX) was much less
active upon the serine protease substrate RDSE002 than all other ve-
noms and, along with C. s. scutulatus (Pima Co., AZ), was significantly
less active upon the serine protease substrate RDES011 (Fig. 4).

In the proteomic examinations, venom from the Pima Co., AZ, po-
pulation of C. s. scutulatus possessed higher concentrations of P-III
SVMP (consistent with the RDES001 and RDSE005 enzyme substrate
results in Fig. 5) and CRiSP proteins than other populations. There was
also differential presence of PLA,, with the most neurotoxic population
(C. s. scutulatus (Culberson Co., TX)) possessing only one PLA, type,
lacking the lower molecular weight form present in the others.

That we witnessed intersubspecific and intrasubspecific venom
variation in neurotoxicity, fibrinogen degradation, PLA, enzymatic
activity, affinity/activity on both metalloprotease and serine protease
substrates, and concentrations of P-III SVMP and CRiSP proteins, is not
particularly surprising as variation in snake venom components is well
documented as occurring at all trophic levels (Glenn and Straight, 1978;
Glenn et al., 1983; Minton and Weinstein, 1986; Glenn and Straight,
1989; Forstner et al., 1997; da Silva and Aird, 2001; Saravia et al.,
2002; Fry et al., 2003; Sanz et al., 2006; Calvete et al., 2007; Angulo
et al., 2008; Fry et al., 2008; Mackessy, 2008; Zelanis et al., 2008; Gibbs
and Mackessy, 2009; Calvete et al., 2010; Calvete et al., 2011; Castro
et al., 2013; Sunagar et al., 2014; Rogalski et al., 2017). Evidence for
co-evolutionary arms races between predators and prey has been
documented in the discovery of prey specific toxins and geographic
variance in prey susceptibility (Poran et al., 1987; Heatwole and Poran,
1995; Daltry et al., 1996a, 1996b; da Silva and Aird, 2001; Li et al.,
2005; Pawlak et al., 2006; Barlow et al., 2009; Gibbs and Mackessy,
2009; Jansa and Voss, 2011). Unfortunately, adequate studies doc-
umenting the feeding ecology of C. s. scutulatus and C. s. salvini in re-
lation to geography are unavailable. The species appear to be dietary
generalists (Cardwell, 2016) but detailed dietary studies, particularly in
the areas where C. s. scutulatus experiences shifts in venom profiles,
may prove informative.

While variation between populations is not a novel finding, these
results are the first investigation into the composition and action of the
medically important subspecies, C. s. salvini, and the first documenta-
tion of its potent neurotoxic effect. Our results also show the inability of
the regionally specific antivenom, Antivipmyn, to neutralise the neu-
rotoxins in C. s. salvini venom, highlighting a crucial consideration for
treatment of envenomation by this subspecies and the implications this
may have on the pathology experienced by envenomed patients.

This study also reinforces neurotoxicity as a plesiotypic feature of C.
scutulatus ssp., as suggested elsewhere (such as Dowell et al., 2016) with
populations lacking this function (such as Pima County, AZ) re-
presenting a derived state. This derived state may be considered a re-
versal condition back to the Type I (high levels of metalloprotease ac-
tivity) from the Type II condition (neurotoxin rich) (Mackessy, 2010).
This reinforces the inherent plasticity of snake venoms and the
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evolutionary as well as clinical implications of such variance.
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