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Abstract: Despite coagulotoxicity being a primary weapon for prey capture by Bothrops species
(lancehead pit vipers) and coagulopathy being a major lethal clinical effect, a genus-wide comparison
has not been undertaken. To fill this knowledge gap, we used thromboelastography to compare
37 venoms, from across the full range of geography, taxonomy, and ecology, for their action upon
whole plasma and isolated fibrinogen. Potent procoagulant toxicity was shown to be the main
venom effect of most of the species tested. However, the most basal species (B. pictus) was strongly
anticoagulant; this is consistent with procoagulant toxicity being a novel trait that evolved within
Bothrops subsequent to their split from anticoagulant American pit vipers. Intriguingly, two of
the arboreal species studied (B. bilineatus and B. taeniatus) lacked procoagulant venom, suggesting
differential evolutionary selection pressures. Notably, some terrestrial species have secondarily lost
the procoagulant venom trait: the Mogi Mirim, Brazil locality of B. alternatus; San Andres, Mexico
locality of B. asper; B. diporus; and the São Roque of B. jararaca. Direct action on fibrinogen was
extremely variable; this is consistent with previous hypotheses regarding it being evolutionary
decoupled due to procoagulant toxicity being the primary prey-capture weapon. However, human
patients live long enough for fibrinogen depletion to be clinically significant. The extreme variability
may be reflective of antivenom variability, with these results thereby providing a foundation for such
future work of clinical relevance. Similarly, the venom diversification trends relative to ecological
niche will also be useful for integration with natural history data, to reconstruct the evolutionary
pressures shaping the venoms of these fascinating snakes.

Keywords: Bothrops; venom evolution; coagulopathy; procoagulant; anticoagulant; fibrinogen

Key Contribution: While procoagulant toxicity mediated by the activation of clotting factors to produce
strong, well-ordered fibrin clots is a defining feature of Bothrops venoms, some derived species are shown
to lack this trait. In addition, the background direct cleavage of fibrinogen, which is of clinical relevance,
is highly variable, which may impact upon clinical effects and antivenom effectiveness.

1. Introduction

Snake venoms exert potent pathophysiological effects upon any physiological path-
way reachable by the bloodstream, and with blood coagulation itself potently affected
by many venomous snake species [1–6]. Venoms may be procoagulant via the activation
of blood clotting factors (e.g., factor X activators and prothrombin activators) [1,2,4–6] or
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anticoagulant via the inhibition of factors (e.g., factor IX and X inhibitors), the hydrolysis of
phospholipids, or the cleaving of factors in a destructive, non-clotting manner [3,6–8]. Fib-
rinogen is a common zymogen that is targeted by venoms. It may be destructively cleaved
by metalloproteases or serine proteases in a non-clotting manner, thereby contributing
to anticoagulation through the depletion of fibrinogen levels [8]. Another direct venom
action upon fibrinogen is pseudo-procoagulation (a form of anticoagulation), whereby
kallikrein-type serine proteases (aka ‘thrombin-like’) cleave fibrinogen imprecisely, leading
to a disordered-lattice network that culminates in weak clots that quickly break down,
thereby also contributing to the depletion of fibrinogen levels [1,3–6,9].

Despite their medical significance, most groups of venomous snakes have not been
investigated in a systematic manner. The wide-ranging genus Bothrops (lancehead pit vipers)
is no exception. Bothrops is a highly speciose genus of pit viper, with 45 species currently
recognised in the genus [10], distributed across Latin-America (Mexico, Central America,
and South America). The speciose nature and wide range of Bothrops across Latin America
is a result of its evolutionary history. The common ancestor of the Bothrops genus was
the first viper to invade South America approximately 23–10 million years ago [11] and it
rapidly diversified into the numerous vacant niches, devoid of vipers, across the landscape.
Today, Bothrops species are found across many habitats and diverse niches [11–14], allowing
for both inter- and intra-specific venom variation. In fact, Bothrops are known to exhibit
geographical venom variation, with the same species having different venom action based
on their geography/habitat [15–17]. For example, Segura et al. [17] found venom variation
between Mexican and Costa Rican B. asper venom samples, with Mexican B. asper venom
having higher lethality to mice and higher in vivo defibrinogenating activity, but lower
in vivo haemorrhagic activity and lower in vitro coagulant activity compared to Costa
Rican B. asper venom samples. Sousa et al. [16] investigated, at a finer scale, B. atrox in a
section of the Brazilian Amazon (western region of the state of Pará), and found differences
in venom composition and in the function between venom samples collected from different
habitats. Consequently, due to the large and intricate landmass of Latin America and the
many habitat types one species may inhabit across its range, more studies on intra-specific,
geography-based venom variation are needed in this genus.

Each year in Latin America, there are approximately 137,000–150,000 cases of enveno-
mation from snakes and 3400–5000 deaths [18]. Bothrops accounts for 70–96.6% of eneveno-
mations in South America [19–22]. Bites are commonly from B. atrox and B. asper [22–24],
although other species are also involved in the snakebite burden on both the mainland
(e.g., B. jararaca [25], B. jararacussu [26], B. pictus [27]) and on the Caribbean islands (e.g.,
Bothrops lanceolatus on Martinique and B. caribbaeus on Saint Lucia [28–31]). In addition to
bites by the aforementioned terrestrial species, bites also occur from the highly derived
arboreal species B. bilineatus and B. taeniatus [32]. In central America 50–80% of bites are
attributed to Bothrops (specifically B. asper) [24,33]. Mexican epidemiological data are scarce,
with little information on the snakes responsible for envenomations, although B. asper pos-
sibly causes a large number of envenomations [34]. It is estimated there are approximately
28,000 envenomations per year in Mexico [35].

Bothrops species are well known for their coagulotoxic venom effects, with proco-
agulant venom action on human plasma often found in venom effect studies [15,36,37]
Amongst other actions, prey capture by Bothrops species is facilitated by potent activation
of factor X and prothrombin by metalloprotease enzymes; this causes an overdose scenario
in which massive amounts of endogenous thrombin are produced, leading to rampant
generation of well-ordered fibrin clots [36,38–43]. This ultimately leads to prey subjugation
through stroke induction [41,44,45]. Pseudo-procoagulant activity—whereby thrombin is
cleaved imprecisely, producing weak, transient clots that are easily broken down—has
also been observed in Bothrops venoms when tested on human fibrinogen [43,46]. In fact,
kallikrein-type serine protease enzymes responsible for pseudo-procoagulant activity are
common among Bothrops venoms [47–51]. As this action is slower than the procoagulant
toxicity, it has been proposed as being an evolutionary relic left over from the antico-
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agulant snakes from which Bothrops diverged prior to uniquely evolving procoagulant
toxicity [36,43]. However, while the prey capture role is unresolved, the direct action upon
fibrinogen is of relevance to human envenomations, as bite victims survive long enough for
fibrinogen depletion to become a significant variable, and thereby contribute to consump-
tive coagulopathy [24,52]. Other activities of clinical significance have been documented in
Bothrops venoms, including direct actions upon platelets, and vessel damage [53].

Prior studies have demonstrated that potent procoagulant toxicity through the activa-
tion of both factor X and prothrombin is a defining trait of Bothrops venoms [42,43,46]. This
distinguishes them from other members of the American pit viper clade, which are typically
anticoagulant (including pseudo-procoagulant) in their action upon the blood [37,54–56].
A seminal study on this subject revealed that of the 26 Bothrops species studied, only
B. taeniatus (formerly B. castelnaudi) was anticoagulant [46]. Notably, this species is also
highly derived in that it is one of the few species that is fully arboreal. Inhibition of coagula-
tion factors was noted as the anticoagulant action [46,57]. Furthermore, in Nahas et al. [46]
the lack of a direct pseudo-procoagulant action upon fibrinogen was noted for B. erythrome-
las which, instead, destructively cleaved fibrinogen in a non-clotting manner. In a recent
study it was shown that B. erythromelas inability to clot fibrinogen is due to the deletion of
SVTLE genes, which are responsible for fibrinogen clotting [58].

A common haemostatic assay used in clinical settings to manage and treat patients
and predict patient outcomes is thromboelastography (TEG) [59–62]. TEG is extremely
useful for measuring blood coagulation parameters as a myriad of aspects are ascertained
simultaneously, including amplitude (A) (strength of the clot) and reaction time (R) (time
until clot formation), thus aiding in the diagnosis and treatment of patients admitted to
hospital with coagulopathy. In fact, it has proven useful in guiding the management of
coagulopathy in snakebite patients [63]. This technology has also gained traction in the
scientific research world, in which researchers use it to test the coagulotoxic action of
diverse snake venoms on fibrinogen and plasma, including Bothrops species [9,36,37,64,65].

Despite their evolutionary novelty and extreme medical importance, the relative effects
of Bothrops venoms upon coagulation are data-deficient. While an extensive amount of
research on Bothrops species and their venom (specifically B. atrox and B. asper) has been
undertaken, many species’ coagulotoxic venom action remains relatively under-studied,
including the arboreal B. bilineatus and B. taeniatus, and island dwelling B. caribbaeus.
To date, a single paper examines the in vitro effects of B. caribbaeus venom on human
plasma [66]. Only a few studies on the in vitro coagulotoxic effects of B. bilineatus venoms
have also been performed [46,67,68]. More studies examining in vitro coagulotoxic venom
effects have been performed on B. taeniatus [46,57,69,70], although the species’ venom
remains relatively under-studied.

In this study, we investigated the coagulotoxic venom action of 37 Bothrops venom
samples (comprising 19 different species and numerous geographical localities) on human
plasma and fibrinogen using an in vitro assay: thromboelastography. By using numerous
geographical localities and testing many under-studied species, this study aims to provide
a detailed description of the clotting action of these evolutionarily novel and clinically
important venomous snakes. We hope our results can guide the future research and
management of Bothrops bites, particularly from under-studied species (such as the arboreal
and island-dwelling Bothrops) and/or snakes from under-studied regions.

2. Results
2.1. Venom Action on Human Plasma

The spontaneous clotting control of human plasma (negative control) had a reaction
time (R) of 861.7 ± 33.3 and an amplitude (A) of 26.0 ± 1.8 mm (Figures 1 and 2). The
positive controls R was 28.3 ± 2.9 s (thrombin control) and 31.7 ± 2.9 s (FXa control), while
A was 28.6 ± 1.0 mm (n = 3) (thrombin control) and 27.7 ± 0.7 mm (FXa control) (Figure 1).
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Figure 1. Thromboelastography traces showing the action of Bothrops venoms (red traces) on human 
plasma. A total of 18 representatives (red traces) of the 37 venoms examined (Table 1) are overlaid 
on top of the spontaneous control (blue traces) and ordered in the figure alphabetically. Three con-
trols were performed: a negative control (spontaneous clotting time of plasma, blue traces), and two 
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shown: SP (split point—time until tracing splits, representing start of clotting), R (reaction time—

Figure 1. Thromboelastography traces showing the action of Bothrops venoms (red traces) on human
plasma. A total of 18 representatives (red traces) of the 37 venoms examined (Table 1) are overlaid on
top of the spontaneous control (blue traces) and ordered in the figure alphabetically. Three controls
were performed: a negative control (spontaneous clotting time of plasma, blue traces), and two
positive controls (thrombin control and FXa control, green traces). Three clotting parameters are
shown: SP (split point—time until tracing splits, representing start of clotting), R (reaction time—time
until amplitude = 2 mm, representing time until detectable clot), and A (Amplitude—width of tracing
at latest time point, representing clot strength at latest time point). All values are mean ± standard
deviation (n = 3). Each test lasted 1800 s, so > 1800 s indicates that the parameter was not recorded
in this time. The spontaneous clotting control of human plasma (negative control) had an SP of
778.3 ± 51.1 s, R of 861.7 ± 33.3 s, and A of 26.0 ± 1.8 mm. Locality details for locality abbreviations
used in this figure can be found in Table 1.
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Ancestral state reconstructions (Figure 2) highlight the clotting activity of Bothrops
across the phylogeny. A diverse range of clotting activity on human plasma was seen in
the Bothrops samples tested, with R ranging from 10 to 1800 s (machine maximum reading),
and A ranging from 0 to 25.2 mm. Consistent with procoagulant toxicity being a defining
feature of Bothrops venoms, most venoms quickly formed strong clots, such as those of
the positive controls (Figures 1 and 2). Although the clots were strong, no venom reached
the clotting strengths of the controls. Despite most species forming quick and strong clots,
there was variability observed between them (Figures 1 and 2). In particular, significant
variation in the relative procoagulant potency was observed between B. alternatus, B. asper,
B. atrox, and B. jararaca, and the localities. Conspicuously slower, but still procoagulant,
was B. lanceolatus (Figures 1 and 2).
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Figure 2. Ancestral state reconstructions of Bothrops venom clotting parameters from thromboe-
lastography on human plasma. The parameters R (reaction time—time until amplitude = 2 mm,
representing time until detectable clot in seconds) (left) and A (amplitude—width of tracing at latest
time point, representing clot strength at latest time point in mm) (right) are shown. All values are
mean ± standard deviation (n = 3) and spontaneous clotting control values are shown below each
phylogeny. The colour gradient ranges from violet to black, with violet representing faster clotting
times (left hand side) and stronger clots (right hand side). Note: due to the high dynamicity of
venom evolution, the node bar ranges quickly become broad as one moves down the tree. The
phylogeny was produced using timetree.org and updated with information from Alencar et al. [71],
Carrasco et al. [72], and Fenwick et al. [73]. Each test lasted 1800 s, so R >1800 s indicates that R was
not recorded in this time. Note: although B. alternatus (MM, Brazil) has an R > 1800 s, a weak clot
was still observed (A = 1.7 ± 0.1) (R is only recorded if A > 2 mm). The spontaneous clotting control
of human plasma (negative control) had a reaction time (R) of 861.7 ± 33.3 and amplitude (A) of
26.0 ± 1.8 mm. Locality details for locality abbreviations used in this figure can be found in Table 1.

Not all species venom formed fast, strong clots (Figures 1 and 2). Consistent with
Bothrops evolving from anticoagulant snakes, the most basal species, B. pictus, prevented
plasma from clotting before the machine maximum time was reached, thereby display-
ing extremely potent anticoagulant toxicity. Intriguingly, while the other two studied
localities of B. alternatus were potently procoagulant, the Mogi Mirim, Brazil locality was
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anticoagulant, thus representing a secondary loss of the derived procoagulant trait. The
venom did clot plasma, albeit weakly (A = 1.7 mm), but only started clotting plasma
after an extended period of time (SP = 1010 ±/ 65.6 s, shown on Figure 1); thus, it was
deemed anticoagulant. Note that R was not recorded for the Mogi Mirim, Brazil locality
(R > 1800) as A was less than 2 mm. While one arboreal species (B. oligolepis) acted in a
procoagulant manner, rapidly producing a strong clot, the two others studied (B. bilineatus
and B. taeniatus) displayed unique patterns in the plasma thromboelastography studies
(Figures 1 and 2). The arboreal species B. taeniatus marginally extended clotting time past
that of the negative (spontaneous clotting) control, but conspicuously, clot strength was
greatly reduced. Despite a clot being registered before the negative control (spontaneous
clotting time) for another arboreal species, B. bilineatus, the clot strength was, like that
of B. taeniatus, greatly reduced. Similarly, despite clotting being registered at time values
shorter than those of the negative (spontaneous clotting) control, only weak clots were
formed for the San Andres, Mexico locality of B. asper, B. diporus, and the São Roque locality
of B. jararaca (Figures 1 and 2).

2.2. Venom Action on Human Fibrinogen

In contrast to recalcified plasma, fibrinogen does not spontaneously clot. Thus, all
the results were compared against the thrombin control (positive control). The thrombin
control had a reaction time (R) of 31.7 ± 2.9 s and an amplitude (A) of 12.6 ± 0.5 mm
(Figures 3 and 4).
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fibrinogen. A total of 18 representatives (red traces) of the 37 venoms examined (Table 1) are overlaid
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parameters are shown: SP (split point—time until tracing splits, representing start of clotting), R (reaction
time—time until amplitude = 2 mm, representing time until detectable clot), and A (amplitude—width
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of tracing at latest time point, representing clot strength at latest time point). All values are
mean ± standard deviation (n = 3). Each test lasted 1800 s, so >1800 s indicates that the param-
eter was not recorded in this time. The thrombin control had an SP of 25.0 ± 5.0 s, R of 31.7 ± 2.9 s,
and A of 12.6 ± 0.5 mm. Locality details for locality abbreviations used in this figure can be found
in Table 1.
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Figure 4. Ancestral state reconstructions of Bothrops venom clotting parameters from thromboelas-
tography on human fibrinogen. The parameters R (reaction time—time until amplitude = 2 mm,
representing time until detectable clot in seconds; left) and A (amplitude—width of tracing at latest
time point, representing clot strength at latest time point in mm; right) are shown. All values are
mean +/− standard deviation (n = 3) and thrombin control values are shown below each phylogeny.
The colour gradient ranges from violet to black, with violet representing faster clotting times (left
hand side) and stronger clots (right hand side). Note: due to the high dynamicity of venom evolution,
the node bar ranges quickly become broad as one moves down the tree. Each test lasted 1800 s, so
R > 1800 s indicates that R was not recorded in this time. Bold species names indicate no R parameter
was recorded in the test time; thus, R = >1800, and the A parameter = 0 mm (no clot observed,
TEG trace flatlined). Note: although Bothrops barnetti (Peru) and B. oligolepis (MM, Brazil) have an
R > 1800 s, a weak clot was still observed (A = 1.6 ± 0.1 and 1.7 ± 0.2, respectively; R is only record if
A > 2 mm). The phylogeny was produced using timetree.org and updated with information from
Alencar et al. [71], Carrasco et al. [72], and Fenwick et al. [73]. The thrombin control had an R of
31.7 ± 2.9 s and A of 12.6 ± 0.5 mm. Locality details for locality abbreviations used in this figure can
be found in Table 1.

In order to ascertain whether the species noted above that lack true procoagulant
toxicity (San Andres, Mexico locality of B. asper, B. diporus, São Roque locality of B. jararaca,
and the arboreal species B. bilineatus and B. taeniatus) clot fibrinogen, and to ascertain if this
direct action on fibrinogen was a background activity for other species, thromboelastog-
raphy studies were repeated using purified fibrinogen in place of plasma. Ancestral state
reconstructions (Figure 4) were used to highlight the clotting activity of Bothrops across
the phylogeny.

Consistent with the plasma patterns, the San Andres, Mexico locality of B. asper and
the São Roque locality of B. jararaca directly clotted fibrinogen in a pseudo-procoagulant
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manner, forming weak fibrin clots relative to the thrombin control (Figures 3 and 4).
Therefore, these species lack the true procoagulant trait of factor activation (representing
a secondary loss of this trait), and instead, only produce the pseudo-procoagulant form
of clotting.

Consistent with pseudo-procoagulant action on fibrinogen being an evolutionary relic
for most species, there was no clear organismal phylogenetic pattern observed for fibrinogen
clotting for the other species that displayed procoagulant venom on human plasma; venoms
that possess pseudo-procoagulant action are apparently randomly distributed across the
phylogeny, and many species lack this activity (Figure 3). Additionally, and also consistent
with pseudo-procoagulant action on fibrinogen being an evolutionary relic, is that most
venoms acting in this manner are slower than that of anticoagulant vipers, which use action
upon fibrinogen as part of their predatory arsenal [9,55,74,75].

2.3. Fibrinogen Destruction Venom Activity

The eight venoms that did not induce a measurable clot on fibrinogen (A = 0, R = > 1800,
flatline on TEG trace) (Figures 3 and 4) were further tested for their ability to cleave
fibrinogen in a non-clotting, destructive manner (Figure 5). This was undertaken using
the Claussian method [76], whereby after the incubation of venom with fibrinogen, a vast
excess of thrombin was added. Any increase in clotting time or decrease in clot strength
observed is due to a depletion of fibrinogen levels.

All eight venoms that did not clot fibrinogen (B. diporus, B. alternatus (Araraquara,
Guararena, and Mogi Mirim, Brazil), B. lanceolatus, B. caribbaeus, B. bilineatus, and B. taeniatus)
exhibited fibrinogen destruction to varying degrees (Figure 5). The island dwellers
(B. lanceolatus and B. caribbaeus) and the arboreal B. bilineatus were the most potent fib-
rinogen destroyers (A < 1.0 mm), while B. alternatus (Mogi Mirim, Brazil) was the weakest
(A = 9.6 ± 0.7 mm). Like the pseudo-procoagulant fibrinogen clotting, no clear organismal
phylogenetic pattern was observed for fibrinogen destruction, with venoms that possess
this action apparently randomly distributed across the phylogeny (Figure 3).
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Figure 5. Thromboelastography traces showing the action of Bothrops venoms that did not clot
fibrinogen (8/37 venoms) in a fibrinogen destruction assay. Venoms are ordered alphabetically in the
figure. For each test, fibrinogen was incubated with venom for 30 min before the addition of thrombin
in a Claussian protocol. The green trace represents the trace of each sample after 30 min incubation
(no clot formed). The positive control (thrombin control) is shown in blue and venom samples
(red traces) are overlaid on top of the thrombin control (blue traces). Three clotting parameters
are shown: SP (split point—time until tracing splits, representing start of clotting), R (reaction
time—time until amplitude = 2 mm, representing time until detectable clot), and A (amplitude—
width of tracing at latest time point, representing clot strength at latest time point). All values are
mean ± standard deviation (n = 3). Each test lasted 1800 s, so >1800 s indicates that the parameter
was not recorded in this time. The thrombin control had an SP of 30.0 ± 5.0 s, R of 38.3 ± 2.9 s, and A
of 15.2 ± 0.3 mm. Locality details for locality abbreviations used in this figure can be found in Table 1.

3. Discussion

By undertaking the most comprehensive study to date of Bothrops coagulotoxic ef-
fects (37 venoms spanning 19 species and covering the full taxonomical and ecological
diversity, including arboreal and island species), this study produced data with tangible,
real-world applications by providing information regarding potential clinical effects, while
also contributing to the theoretical knowledge of their evolutionary biology. Procoagu-
lant toxicity was shown to be a defining trait of the genus (Figures 1 and 2). Although
studies on specific coagulation factor activation were not performed, the strong proco-
agulant toxicity is likely achieved through coagulation factor activation (e.g., prothrom-
bin and FX activation) [36,38–43]. Consistent with previous studies using more limited
datasets [15–17,43] interspecific and intraspecific variations were noted.

A conspicuous result was the documentation of B. caribbaeus and B. lanceolatus as
being procoagulant in this study, when prior work had suggested that these species lacked
this trait [66,77]. However, in both prior studies, recalcification was not undertaken for
the citrated plasma, as they followed a 1983 protocol that does not include calcium and,
consequently, does not reproduce physiological conditions [78]. This is a flaw in the
study design, as it has been shown that some Bothrops venoms themselves are calcium-
dependent in their action [42,43]. Similarly, in neither study was the phospholipid cofactor
added, which has also been shown to be an important co-factor for many procoagulant
venoms [5,79]. Thus, in the absence of calcium and phospholipid, little, if any, venom
action would be evident; this was clearly the case in the prior B. caribbaeus and B. lanceolatus
studies as both venoms were procoagulant upon recalcified plasma in this study, and
produced strong, stable clots (Figures 1 and 2). Furthermore, Bourke et al. [15] tested
BothroFav (a monospecific B. lanceolatus antivenom) efficacy on procoagulant B. atrox and
B. asper and showed that the antivenom was able to neutralise the procoagulant venom
effects, specifically those of B. atrox. This suggests that procoagulant toxins are present
in B. lanceolatus, as horses immunised with B. lanceolatus venom produce an antivenom
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(BothroFav) that can neutralise such toxins. Overall, the procoagulant activity of the island-
dwelling Bothrops in this study is interesting and deserves further attention in future studies.

The most basal species, B. pictus [71,80], was like most non-Bothrops American pit
vipers [37,55,56,81] in that it lacked procoagulant venom; it was anticoagulant on human
plasma (Figures 1 and 2). This result might be indicative of the common ancestor of all Both-
rops having a distinct anticoagulant venom action compared to the often procoagulant action
seen in the more derived Bothrops. Indeed, the limited studies that have been performed on
the sister genus Bothrocophias indicate that their venom has low coagulant activity [82,83].
Interestingly, despite being anticoagulant on human plasma, when tested on isolated fib-
rinogen, B. pictus venom induced a weak clot (A = 3.1 ± 0.1 mm) after an extended period
(R = 1066.7 ± 23.6) (Figure 3). This indicates that pseudo-procoagulant (aka ‘thrombin-like’)
enzymes are present in the venom, which confirms previous studies [84]. When injected
into prey items, the pseudo-procoagulant enzymes likely act synergistically with other
anticoagulant toxins, consuming clotting factors to produce an anticoagulant pathology.

Furthermore, underscoring the dynamic nature of venom diversification, the char-
acteristic Bothrops procoagulant venom trait was secondarily lost in several species. This
includes the derived arboreal species B. bilineatus and B. taeniatus (Figures 1 and 2). This is
consistent with previous reports [46,57,67,70]. Note that previous literature on B. bilineatus
subspecies found that B. b. bilineatus clotted human plasma [46,67], while B. b. smaragdinus
did not [67]. The subspecies of the present studies venom sample is unknown. Some
terrestrial species have also secondarily lost the procoagulant venom trait: the Mogi Mirim,
Brazil locality of B. alternatus; the San Andres, Mexico locality of B. asper; B. diporus; and the
São Roque of B. jararaca. The divergence within B. alternatus is consistent with previous
reports on other localities that found extreme variation between venoms in Brazil [70],
which is also consistent with this wide-ranging species, in fact, being a species complex.

Unlike procoagulant toxicity, which is well defined as being a potent predatory weapon
through stroke induction, it has been suggested that the pseudo-procoagulant direct action
upon fibrinogen to produce weak, short-lived fibrin clots is an evolutionary relic and does
not play a role in prey capture, as it is much slower in action than procoagulant factor acti-
vation [36,43]. However, as this theory was advanced through datasets containing limited
venom diversity, the role has remained enigmatic in the absence of a comprehensive study
such as this one. The results demonstrate that there was a lack of phylogenetic signal for
this trait in that the variations were random between species and locality (Figures 3 and 4).
This, indeed, lends supports to the hypothesis that this trait is an ancestral relic and, as-
suming no ecological difference among the Bothrops species examined, not subjected to
purifying selection pressure. However, as has been noted in clinical cases [24,52], human
bite victims survive long enough for the additional depletion of fibrinogen to contribute
to the consumptive coagulopathy; therefore, the documentation of the species with the
greatest relative potency in this regard will contribute to the body of knowledge, which is
useful for designing evidence-based clinical management strategies. The species with the
most relatively potent action (small R and small A values) in this regard were the terrestrial
species B. jararacussu (all tested), B. asper (Costa Rica and Ecuador only amongst those tested
in this study), B. atrox (all tested), B. leucurus, B. moojeni (all tested), B. neuwiedi (Curitiba,
Brazil only amongst those tested in this study), B. pauloensis, and B. jararaca (all tested except
Rio Negrino). This suggests that in clinical cases, these species may produce additional
fibrinogen depletion on top of that consumed by the procoagulant mode of action.

In addition, some other species showed the ability to destructively (non-clotting) cleave
fibrinogen, which would also contribute to fibrinogen depletion (Figure 5). Bothrops diporus,
B. alternatus (Araraquara, Guararena, and Mogi Mirim, Brazil), B. lanceolatus, B. caribbaeus,
B. bilineatus, and B. taeniatus all displayed the ability to destroy fibrinogen. The most
potent were the island species B. lanceolatus and B. caribbaeus and the arboreal species
B. bilineatus. Interestingly, despite destroying fibrinogen (anticoagulant effect) B. lanceolatus
and B. caribbaeus were also potently procoagulant on human plasma (Figures 1, 2 and 5).
This is counter-intuitive: procoagulant toxins work to produce a clot while fibrinogen-
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destroying toxins work to stop the production of a clot. The observed clot on human
plasma is likely reflective of the procoagulant toxins taking over and producing fibrin
before fibrinogen destruction can occur. Other contrasting venom actions were seen for the
Guararena and Araraquara locality B. alternatus, which produced strong clots in human
plasma, but also destroyed fibrinogen (Figures 1, 2 and 5).

Interestingly, extensive variation was shown within B. alternatus, with the Mogi Mirim
locality being much weaker than the other two localities in the fibrinogen destruction
trait (Figure 5), despite lacking the procoagulant venom trait as shown in human plasma
tests (Figures 1 and 2). This suggests that toxins that inhibit upstream coagulation factors,
rather than directly affect fibrinogen, are involved in producing the anticoagulant effects
on human plasma observed for the B. alternatus Mogi Mirim locality venom. For the
other species that lacked a procoagulant trait, the terrestrial species B. diporus and the
arboreal species B. bilineatus and B. taeniatus, have upregulated the ability to directly cleave
fibrinogen in a destructive (non-clotting) manner. This suggests that, at least in these
venoms, the action may have a role in prey capture, with these snakes having reverted
back to the ancestral fibrinogen-depleting anticoagulant condition. In addition, relative to
procoagulant species, the arboreal species may have greater reliance upon the neurotoxic
activity documented for those venoms [85–87] to subjugate prey. A lack of procoagulant
activity might be beneficial in allowing neurotoxins to spread throughout the body, as
localised clots might “trap” neurotoxins, preventing them from spreading. This theory of
toxin synergism and clots “trapping” toxins is discussed in Jackson et al. [88]. Furthermore,
B. bilineatus and B. taeniatus feed on a variety of vertebrates [14,89,90]; thus, rather than
neurotoxicity evolving to target a particular prey type, neurotoxins may have evolved
in the venom to incapacitate prey items quickly, decreasing the chance of prey dropping
from the trees and escaping. This hypothesis, however, needs to be tested by ascertaining
relative neurotoxic effects on prey-lineage targets.

The secondary change from procoagulant to anticoagulant cleavage of fibrinogen,
whether in a destructive manner or a pseudo-procoagulant manner, is almost certainly
due to differential selection pressure for the species that display these traits. The arbo-
real species are under clear divergent selection pressure for prey-escape potential, thus
providing a hypothesis regarding the change in venom phenotype to the destructive fib-
rinogenolytic form of anticoagulation. However, there is an enigmatic question of what
selection pressures (e.g., changes in prey preference or changes in prey-escape potential)
led to the divergence—relative to other terrestrial Bothrops—for B. diporus to convergently
evolve with these arboreal species the destructive fibrinogenolytic form of anticoagulation.
What is also enigmatic is the question of why the San Andres, Mexico locality of B. asper and
the São Roque locality of B. jararaca convergently evolved relative to each other to lose the
procoagulant trait, and instead, have the pseudo-procoagulant fibrinogenolytic venom phe-
notype. These results, therefore, provide a starting point for natural history observations
to reconstruct the selection pressures leading from these species, which are nested deep
within the procoagulant Bothrops clade, to diverge to a fibrinogenolytic venom phenotype.

This documentation of extreme coagulotoxicity diversity across the Bothrops genus
is a tangible benefit, as clinical observation of envenomated patients corroborate these
results, with patients experiencing the haemostatic disorders of unclottable blood and
systemic bleeding [23–25,91,92].

Understanding the caveats of a study are important so that appropriate conclusions
can be made. An important caveat in this study is that all tests are in vitro, without flow
of blood and without multiple systems interacting; hence, the conclusion of the results
needs to be interpreted with this in mind. In vitro studies are effective for investigating
specific venom actions upon the coagulation cascade, such as in the present study. As
in vivo systems are complex and dynamic, in vitro results may not line up with in vivo
results. An important note, however, is that this study was undertaken using human
plasma and; thus, while in vitro, it may produce results more suggestive of potential
human envenomation effects than in vivo animal-model studies, if the venoms have a
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differential effect between humans and animal-models. This is, indeed, recognised as
a critical issue and a limitation of the applicability of animal-based research for human
medicine [93]. Regardless, future in vivo work should be conducted before making any
therapeutic recommendations regarding clinical care. Lastly, this study only tested venom
on human plasma and fibrinogen, yet some Bothrops venoms have been shown to have
different action when tested on the plasma of different prey types [43]. Although it is
beyond the scope of this study, future studies should test a wide range of Bothrops venom
on non-human animal plasmas to test for differences in venom action among prey types, in
order to provide information about evolutionary selection pressures leading to changes in
the venom phenotype.

Overall, this study vastly improves our fundamental knowledge base on the coagulo-
toxic action of Bothrops venoms. We hope this wealth of new knowledge for toxinologists
will fuel many future studies, as well as provide a solid platform for evolutionary biologists
to use alongside natural history observations of these fascinating snakes.

4. Materials and Methods
4.1. Venom Sample Preparation

Venom work was undertaken under University of Queensland Animal Ethics Ap-
proval 2021/AE000075. All venoms used in the study were in lyophilised form and obtained
from the University of Queensland’s Venom Evolution Lab’s long-term venom collection,
venom suppliers, and collaborators. Thirty-seven venoms were used in the study, including
nineteen different species and numerous geographical variants (Table 1).

Table 1. Bothrops venoms used in the study with additional details supplied: whether venoms are
from single individuals or pooled from multiple individuals (n values are supplied if known), locality,
sex, age, and source (captive-born or wild-caught snakes). Note: captive-born snakes originate from
snakes from the specified locality. Locality abbreviations are the abbreviation for each locality used in
the study (“–” = no abbreviation given).

Species Pooled (n) or
Individual Locality

Locality
Abbreviation in
Figures (If Used)

Sex Approx Age (yrs)
Source, and

Wild-Caught or
Captive Bred Stock

B. alternatus Individual Mogi Mirim–SP,
Brazil MM, Brazil F 9 Instituto Butantan,

wild-caught in 2009

B. alternatus Individual Guararena–SP,
Brazil G, Brazil F 7

Instituto Butantan,
captive-born in 2011,

17a specimen from litter

B. alternatus Individual Araraquara–SP,
Brazil A, Brazil F 5 Instituto Butantan,

wild-caught in 2013

B. atrox Individual São Bento–MA,
Brazil SB, Brazil F 12 Instituto Butantan,

wild-caught in 2009

B. atrox Pooled (2)

Balbira–AM,
Brazil x São

Bento–MA, Brazil BxSB, Brazil
F 8

Institute Butantan,
captive-born in 2010, l1a

specimen from litter
Balbira–AM,
Brazil x São

Bento–MA, Brazil
F 8

Institute Butantan,
captive-born in 2010, 7a

specimen from litter

B. atrox Pooled (66) French Guiana - M + F Adults Latoxan, captive-born
and wild-caught snakes

B. atrox Pooled (n values
not supplied)

Alto Marañon,
Peru (Amazon

rainforest)
Peru UNKN Adults EFS, wild-caught

B. atrox UNKN Suriname - UNKN Adults Kentucky reptile zoo,
unknown

B. atrox UNKN Colombia - UNKN Adults Kentucky reptile zoo,
unknown

B. asper Pooled (40) Costa Rica
(Pacific region) Costa Rica UNKN Adults JMG, wild-caught

B. asper Pooled (2) Ecuador - M Adults Latoxan, captive-born
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Table 1. Cont.

Species Pooled (n) or
Individual Locality

Locality
Abbreviation in
Figures (If Used)

Sex Approx Age (yrs)
Source, and

Wild-Caught or
Captive Bred Stock

B. asper Individual Mérida, Yucatán,
Mexico MY, Mexico UNKN Adult UNAM, wild-caught

B. asper Individual
San Andres,

Tuxtla, Veracruz,
Mexico

SATV, Mexico UNKN Adult UNAM, wild-caught

B. asper Individual Ixtaczoquitlan,
Veracruz, Mexico IV, Mexico UNKN Young adult UNAM, wild-caught

B. barnetti Pooled (n values
not supplied)

Talara,
Department of
Tubmes, Peru

Peru UNKN Adults UNMSM, wild-caught

B. bilineatus Pooled (2) UNKN - F + F Adults M-toxins, imported

B. caribbaeus UNKN St. Lucia, West
Indies - UNKN Adults Kentucky reptile zoo,

wild-caught
B. diporus UNKN UNKN - UNKN Adults VEL, imported

B. jararacussu Pooled (2) Juquitiba–SP
J, Brazil

F 3 Instituto Butantan,
wild-caught in 2015

Juquitiba–SP F 3 Instituto Butantan,
wild-caught in 2015

B. jararacussu Individual Cubatão–SP C, Brazil F 3 Instituto Butantan,
wild-caught in 2015

B. jararaca Individual Rio Negrino–SC RN, Brazil F 1 Instituto Butantan,
wild-caught in 2017

B. jararaca Individual São Roque–SP SR, Brazil F 3 Instituto Butantan,
wild-caught in 2015

B. jararaca Individual Ibiúna–SP I, Brazil F 3 Instituto Butantan,
wild-caught in 2015

B. lanceolatus UNKN Martinique - UNKN Adults Latoxan, imported

B. leucurus Pooled (3)

Porto Seguro–BA

PS, Brazil

F 3
Instituto Butantan,

captive-born in 2016, 5a
specimen from litter

Porto Seguro–BA F 3
Instituto Butantan,

captive-born in 2016,
13a specimen from litter

Porto Seguro–BA M 3
Instituto Butantan,

captive-born in 2016,
14a specimen from litter

B. mattogrossensis Pooled (3)

Porto
Murtinho–MS

PM, Brazil

F 6
Instituto Butantan,

captive-born in 2012, 4a
specimen from litter

Porto
Murtinho–MS F 9 Instituto Butantan,

wild-caught in 2009
Porto

Murtinho–MS F 9 Instituto Butantan,
wild-caught in 2009

B. mattogrossensis UNKN Bolivia - UNKN Adults VEL, imported

B. moojeni Individual Palmas–TO P, Brazil F 13 Instituto Butantan,
wild-caught in 2005

B. moojeni Pooled (2)

Gaúcha do
Norte–MT

GdN, Brazil

F 8
Instituto Butantan,

captive-born in 2010,
13a specimen from litter

Gaúcha do
Norte–MT F 8

Instituto Butantan,
captive-born in 2010, 5a

specimen from litter

B. neuwiedi Individual Salto Pirapora–SP SP, Brazil M 6
Instituto Butantan,

captive-born in 2013, 3a
specimen from litter

B. neuwiedi Individual Curitiba–PR C, Brazil F 2 Instituto Butantan,
wild-caught in 2017

B. neuwiedi Individual Munhoz–MG M, Brazil F 4 Instituto Butantan,
wild-caught in 2015

B. oligolepis Pooled (3)

La Merced,
Chanchamayo,
Peru (central

rainforest región)

Peru UNKN Adults UNMSM, wild-caught
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Table 1. Cont.

Species Pooled (n) or
Individual Locality

Locality
Abbreviation in
Figures (If Used)

Sex Approx Age (yrs)
Source, and

Wild-Caught or
Captive Bred Stock

B. pauloensis Pooled (3)

São Simão–SP

SS, Brazil

F 6
Instituto Butantan,

captive-born in 2012, 6a
specimen from litter

São Simão–SP F 7
Instituto Butantan,

captive-born in 2011, 2a
specimen from litter

São Simão–SP F 7
Instituto Butantan,

captive-born in 2011, 6a
specimen from litter

B. pictus Pooled (7)
Districts of

Carabayllo and
Comas, Peru

Peru UNKN Adults UNMSM, wild-caught

B. pubescens UNKN Uruguay - UNKN Adults VEL, imported
B. taeniatus UNKN UNKN - UNKN Adults VEL, imported

EFS = Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel
Dias Foundation, Belo Horizonte, MG 30510-010, Brazil; JMG = José María Gutiérrez, Instituto Clodomiro
Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; UNAM = Alejandro
Alagon, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologa, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico; UNNSM = Armando Yarleque,
Universidad Nacional Mayor de San Marcos, Lima, Peru; VEL = Venom Evolution Lab, UQ, Australia.

Venoms were prepared to a 1 mg/mL stock solution (50:50 double deionised water
(ddH20):glycerol) using a Thermo Fisher Scientific™ NanoDrop 2000 (Waltham, MA, USA)
at 280 nm wavelength, and stored at −80 ◦C until experimentation, during which they
were stored at −20 ◦C. This storage limited enzyme degradation, as did the use of glycerol
in venom stocks, which function to stabilise enzymes.

4.2. Plasma and Fibrinogen Preparation

Human plasma work was performed under University of Queensland Biosafety Ap-
proval #IBC134BSBS2015 and Human Ethics Approval #2016000256. The Australian Red
Cross (44 Musk Street, Kelvin Grove, QLD 4059, Australia) supplied human platelet-poor
plasma (3.2% citrated, O positive, Label # A540021261153) under research approval #16-
04QLD-10. Once obtained, plasma was stored at −80 ◦C until aliquoted. Plasma was
aliquoted into 1.5 mL tubes by defrosting in a water bath at 37 ◦C and aliquoting into
1.5 mL tubes in a biosafety cabinet, to avoid contaminating the plasma. Plasma was then
stored at −80 ◦C until experimentation.

Human fibrinogen (Sigma Aldrich, St. Louis, MO, USA) was prepared to 4 mg/mL
by diluting 100 mg of fibrinogen with Owren Koller (OK) buffer to a volume of 25 mL.
This solution was then vortexed until solubilised; it was aliquoted, then the tubes were
flash-frozen with liquid nitrogen and immediately stored at −80 ◦C.

4.3. Thromboelastography Experiments

Two TEG® 5000 Thrombelastograph® Haemostasis Analyser systems were used con-
currently, containing two reaction stations each. Natural cups and pins were placed into
each channel and the heating plate set to 37 ◦C. All reagents were then pipetted into the cup
as per our previously validated protocol [43]: 72 µL CaCl (25 mM stock solution Stago Cat#
00367); 72 µL phospholipid (Stago Cat# 00597), solubilised in Owren Koller (OK) buffer
(Stago Cat #00360); 20 µL OK buffer; and 7 µL venom sample or control sample (negative
control: 7 µL 50:50 ddH20: glycerol, thrombin control: 7 µL thrombin, or FXa control: 7 µL
FXa). A total of 189 µL plasma or fibrinogen, which had been thawed in a water bath at
37 ◦C for 5 min, was taken out of the water bath and then pipetted into each cup, after
which the 360 µL sample was pipette-mixed and the machine was run for 30 min. For each
cup, the time from pipetting the plasma into the cup until the start of each test (lifting the
cup into the test machine and pressing start) was 10 s. Each venom test was performed
in triplicate (n = 3).
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Venoms that did not clot fibrinogen (the TEG trace was a flatline) were immediately
tested for fibrinogen destruction via a Claussian method [76], using our previously vali-
dated protocol [94]. Fibrinogen destruction tests were conducted because fibrinogen does
not spontaneously clot, like human plasma; thus, a flatline could indicate that the venom
either has no action on fibrinogen or that the venom destroys fibrinogen. In this test,
7 µL of thrombin was added to the cups, which already had a 360 µL sample in them
from the prior test. Then, the whole solution was pipette mixed and run again for 30 min.
The results from the venom runs were compared to the negative control, where a blank
(7 µL ddH20/glycerol) replaced the venom, and thrombin induced a clot upon fibrinogen
in the absence of venom. Note that some venoms that produced a flatline on the initial
fibrinogen destruction test qualitatively produced micro ‘clots’ (small strands). These were
noted for four venoms (B. alternatus (Mogi Mirim, Brazil), B. alternatus (Guararena, Brazil),
B. alternatus (Araraquara, Brazil), and B. lanceolatus (Martinique)) and were ignored in the
study; this is because they were not recorded on the machine and, therefore, were unlikely
to be clinically significant.

The parameters produced by thromboelastography include split point (SP), reaction
time (R), amplitude (A) and maximum amplitude (MA). SP is the time until the tracing
splits, representing the first formation of fibrin strands. R is the time until the first detectable
clot appears (defined by the machine as enough resistance to produce an amplitude >2 mm).
R is the most often-used variable to indicate clot initiation. R is where classic coagulation
assays, such as prothrombin time (PT) and partial thromboplastin time (PTT) assays are
completed; thus, TEG provides a more detailed picture of coagulation than these assays.
Both A and MA represent clot strength. Clot strength is measured as the width of the
tracing in mm (the greater the width, the greater the clot strength). A is the strength of the
clot at the latest time point, while MA is the maximum strength of the clot reached during
the run. MA is only recorded after A > 2 mm (A is equal to MA until MA is determined).
MA is calculated using the small deviation method (time = 3 min), in which MA is only
calculated if itdoes not deviate more than 1 mm for at least 3 min, thus explaining why A is
sometimes >MA.

For a detailed description of how TEG works, see Supplementary File S1.

4.4. Data Analysis

Phylogenetic trees were initially produced using TimeTree (TimeTree.org) and exported
to Mesquite (version 3.61), where additional branches for localities and certain species were
made manually. TimeTree collates data from published studies to produce a phylogeny
from the specified genus which, in this study, is Bothrops. The resulting tree was missing two
of the species analysed in the study: Bothrops barnetti and B. oligolepis. The missing species
were manually added to the tree and their branch lengths estimated, based on phylogenies
from [71–73]. The Mesquite tree file (.phy file) is available in the Supplementary Materials
(Supplementary File S2). The tree was then imported into the statistical software R (version
3.6.1) using the APE package [95]. The contMAP function of the phytools package [96] was
used to estimate ancestral states, using maximum likelihood, and to visually represent the
presented trait over the tree. Four trees were produced: a tree produced from human plasma
reaction time data, a tree produced from human plasma amplitude data, a tree produced
from fibrinogen reaction time data, and a tree produced from fibrinogen amplitude data.
Each data file used to produce the trees can be found in the Supplementary Materials
(Supplementary File S3). The R code is also available in the Supplementary Materials
(Supplementary File S4). The trees were then exported from R and edited with Adobe
Photoshop (version 21.2.11) and Adobe Acrobat Pro DC (version 2021.011.20039) to produce
Figures 2 and 4. Editing consisted of positioning the reaction time and amplitude trees
opposite each other, adding details of species names, and adding the mean ± standard
deviation of R and A values for each respective branch.

Thromboelastography traces were exported from the TEG 5000, and Figures 1, 3 and 5
produced in Adobe Photoshop. All thromboelastography raw data for each venom can
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be found in the Supplementary Materials (Supplementary File S5), with the following
parameters supplied: SP, R, Angle, A, and MA. Note that in the raw data, A is never exactly
0 mm as the sample always induces some resistance. In this study we classed all A values
as 0 mm if the trace was a flatline. Additionally, note that for consistency, Amplitude (A) is
used in Figures 1–5 instead of Maximum Amplitude (MA), since for some venoms, MA
could not be calculated (MA is only calculated if A > 2.0 mm). Furthermore, R was used
instead of SP in phylogenetic trees (Figures 2 and 4) as R represents the time until detectable
clot formation rather than just the first deposition of fibrin strands (SP). R was deemed a
more meaningful parameter to plot.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxins14050297/s1, Supplementary File S1: Thromboelastog-
raphy approach; Supplementary File S2: .phy tree file; Supplementary File S3: Data files for trees;
Supplementary File S4: R code used in analyses; Supplementary File S5: Thromboelastography
raw data.
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