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Abstract

Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival,
plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors
(NGF), brain-derived neurotrophic factors (BDNF) and neurotrophin-3 (NT-3), which have been demonstrated here to
lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important
conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical
arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae) have characteristics
consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of
diversification under the significant influence of positive-selection, with the majority of positively-selected sites found
in the secreted β-polypeptide chain (74%) and on the molecular surface of the protein (92%), while the core structural
and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin
molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of
pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a
massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular
permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their
presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF
follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-
envenomation.
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Introduction

Venom, a complex biochemical cocktail of biologically active
components, such as proteins, peptides, amino acids,
neurotransmitters and polyamines, has underpinned the
diversification and evolutionary success of several animal
lineages [1]. This key evolutionary innovation is employed by a
plethora of animals for predation, competitor deterrence and
defence [2–5]. The scientific consensus is that venom
components originate via toxin recruitment events, as part of
which physiological protein-encoding genes are duplicated and
the new copies are selectively expressed in the venom gland
[5–15]. Over the years, our understanding of the origin and
diversification of snake venoms has greatly increased, largely
due to advances in transcriptomics and proteomics [16–22].
However, the precise role of certain proteins, which are
secreted as part of the biochemical venom arsenal, still
remains to be elucidated. Nerve growth factor (NGF), a key
member of the neurotrophin family, is one such class of protein
whose presence in snake venoms has been intriguing. Since
its discovery in the late 1950s , NGF has been reported from
the venoms of various caenophidian (advanced) snakes,
including members of the front-fanged elapid and viperid
families as well as from venomous lizards [23–29], but its
function and relative importance in snake venoms remains
unknown [8].

Neurotrophins represent a family of structurally related
proteins, crucial for neuronal development, survival, death,
regeneration and plasticity. According to the classical
neurotrophic hypothesis, neurotrophins are produced in limiting
amounts and the survival of the innervating neurons is
dependent on winning the competition for sufficient quantities
of these factors [30,31]. Neurotrophins contain gene family
members such as nerve growth factor (NGF), brain-derived
neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and
neurotrophin-4/5 (NT-4/5) [32–35], all of which function by
interacting with the p75 neurotrophin receptor (NTR) in their
proneurotrophin forms and various structurally related
tropomyosin-related kinase or Tyrosine kinase receptors (Trk)
in their active cleaved form [36,37]. While NGF specifically
activates TrkA [38], BDNF and NT-4/5 interact with TrkB
[36,39]. NT-3 primarily interacts with TrkC and is unique in also
being capable of weakly binding to both TrkA and TrkB [36].

Neurotrophins have been extensively studied not only
because they are perceived as one of the primary factors
responsible for the complexity of vertebrate nervous systems,
but also because of their involvement in cognition and memory.
Knockout of the genes encoding NGF, BDNF and NT-3 genes
is fatal in mice, highlighting the importance of these proteins for
survival and normal neuronal development. Not surprisingly,
abnormalities associated with the production of neurotrophins
have been linked with neuropathies and neurodegenerative
disorders.

In order to investigate the role of NGF in the venom of
Toxicofera reptiles [24], we have investigated the molecular
evolution of these proteins in reptilian (turtles; squamates:
Laterata, Scinciformata, Gekkota; Toxicofera lizards:
Anguimorpha and Iguania; Henophidia snakes; advanced

snakes: Elapidae, Viperidae and ‘non-front-fanged’ advanced
snakes) and mammalian lineages, by employing sophisticated
protein and codon-level selection assessments. We further
compare the molecular evolution of NGF with the other major
members of the neurotrophin family, namely BDNF and NT-3,
in a wide array of reptilian and mammalian lineages. Molecular
evolution analyses conducted on a dataset of 1183 nucleotide
sequences revealed that these genes have remained largely
unchanged since their origin over 300 million years (the split
between mammals and reptiles: www.timetree.org) due to the
extremely important functions they play in vertebrate
homeostasis.

Results

Bayesian and maximum-likelihood analyses of NGF, BDNF
and NT-3 genes retrieved trees with the same topology
(Figures 1-3; Figure S1-S4), which were in concordance with
the earlier reported phylogenies of neurotrophins [40].

One ratio model (ORM), the simplest of the lineage-specific
models, computed ω of less than 0.50, therefore indicating an
influence of negative selection on NGF, BDNF and NT-3 genes
in all of the mammalian and reptilian lineages examined
(Tables S1-S3). This highly conservative model can only detect
positive selection when the ω ratio averaged over all the sites
along the lineages in a phylogenetic tree is significantly greater
than one. Nevertheless, the computed ω of 0.86 for the
Elapidae NGF highlights a relatively greater accumulation of
variation in this lineage (Table S1).

To detect episodic diversifying selection, which only affects
certain sites in the protein, we employed site-specific models
(Tables 1-3; Tables S1-S3). Like ORM, site model 8 (M8) also
indicated a strong influence of negative selection on various
reptilian and mammalian NGF, BDNF and NT-3 genes (Tables
1-3; Tables S1-S3; Figures 4 and 5). However, Elapidae NGF
was found to be rapidly evolving (ω = 0.95). The Bayes
Empirical Bayes (BEB) approach in M8 identified as many as
19 positively-selected sites (13% of the total sites with ω of
4.09) in Elapidae NGF, indicating the strong influence of
positive selection on this lineage (Table 1 and Table S1).
Although, M8 failed to detect variation in the Viperidae (ω =
0.77) and ‘non-front-fanged’ advanced snake (ω = 0.58) NGF
lineages, as many as 9% (ω = 2.40) and 8% (ω = 2.50) of the
total codon sites were detected as rapidly diversifying in the
respective lineages. Single Likelihood Ancestral Counting
(SLAC), Fixed Effects Likelihood (FEL), Random Effects
Likelihood (REL), Mixed Effects Model of Evolution (MEME),
Fast, Unconstrained Bayesian AppRoximation (FUBAR) and
integrative approach, conclusively supported these findings
and highlighted the complete lack of variations in NGF, BDNF
and NT-3 genes in various reptilian and mammalian lineages
examined (Tables 1-3). However, elapid venom NGF was
found to be rapidly evolving under the influence of positive
selection (integrative analyses: 34 positively selected sites).
Viperidae NGF was also found to accumulate relatively greater
variations (integrative analyses: 8 positively selected sites) in
comparison to the non-venomous reptilian and mammalian
NGF lineages. Analysis of NGF from the venom-glands of ‘non-
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front-fanged’ advanced snakes and venomous lizards
(Anguimorpha and Iguania) was hampered by the scarcity of
sequences. Despite this, the integrative approach was able to
identify five positively selected sites in the ‘non-front-fanged’
advanced snake lineages.

We further evaluated selection pressures along the elapid
and viperid NGF lineages using two-ratio model (which
assesses selection pressures only across lineages) and the
branch-site test A (which assesses selection pressures across
the sites and along the lineages). The two-ratio model failed
(p>0.05) to detect positive selection in elapid (ω=0.85) and

Figure 1.  Bayesian molecular phylogeny of nerve growth factors (NGF).  Branches with the Bayesian posterior probability
(B.P.P) of less than 0.85 are highlighted in grey (remaining in colours). Site model 8 (M8) computed ω values for respective
lineages are presented. The number of positively selected sites (PP ≥ 0.95) detected by M8’s Bayes-Empirical Bayes (BEB)
approach in Elapidae lineage is also indicated. Elapid sequences representing putative duplicate genes are indicated with red labels
[NFF: “non-front-fanged” advanced snakes; SCI: Scinciformata].
doi: 10.1371/journal.pone.0081827.g001
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viperid NGF (ω=0.82). However, branch-site test A indicated a
strong influence of positive selection on elapid NGF [ω = 3.90;
4.5% positively selected (PS) sites; significant at 0.001 after
Bonferroni correction] and to a lesser extent on Viperidae NGF
(ω = 2.01 and 8.1% of PS-sites; significant at 0.001 after
Bonferroni correction: Table S4). We further employed the
clade model c approach to simultaneously compute and
compare the ω values of various Toxicofera NGF lineages
(Table 1). Clade model analyses indicated the influence of

positive selection in shaping the evolution of Elapidae NGF
(ω=2.38), while the remaining lineages were found to be
constrained by negative selection (but again with the caveat
that fewer ‘non-front-fanged’ advanced snake and Toxicofera
lizard venom-gland specific NGF sequences were available;
Table 1).

To derive further support for the sites detected as positively
selected by the nucleotide analyses of elapid NGF, we
employed a complementary amino acid-level approach

Figure 2.  Bayesian molecular phylogeny of brain-derived neurotrophic factors (BDNF).  Branches with the Bayesian posterior
probability (B.P.P) of less than 0.85 are highlighted in grey (remaining in colours). Site model 8 (M8) computed ω values for
respective lineages are presented.
doi: 10.1371/journal.pone.0081827.g002
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implemented in TreeSAAP (Table 4). Since a mutated amino
acid can share similar/identical biochemical and structural
properties with the ancestral amino acid being replaced, not all
non-synonymous mutations may affect the structure and
function of a protein. Hence, the evaluation of the influence of
selection on the biochemical and structural properties of
proteins provides further insights about the strength of a

mutation in affecting the fitness of an organism. With this
combined approach, we were able to identify 13 positively
selected sites (68% of positively selected sites) in elapid NGF
(Table 4). Mapping of these mutations onto the three-
dimensional structure of NGF revealed that a majority of
detected hypermutable sites (74%) were concentrated in the
secreted region (β-polypeptide chain) of Elapidae NGF (Figure

Figure 3.  Bayesian molecular phylogeny of neurotrophin-3 (NT-3).  Branches with the Bayesian posterior probability (B.P.P) of
less than 0.85 are highlighted in grey (remaining in colours). Site model 8 (M8) computed ω values for respective lineages are
presented.
doi: 10.1371/journal.pone.0081827.g003
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S5). Mutation mapping also revealed that a greater proportion
of amino acid residues (92%; remaining sites couldn’t be
assigned to exposed/buried class) were exposed to the
surrounding medium, indicating that these Elapid venom
proteins evolve through focal mutagenesis (Table 4).

Evolutionary fingerprint analyses, which is based on the
probability distribution of site-to-site synonymous (α or dS) and
nonsynonymous (β or dN) substitution rates in an alignment,

identified a significantly large proportion of sites in elapid NGF
as evolving under the influence of positive selection, while the
remaining reptilian and mammalian NGF, BDNF and NT-3
lineages were depicted as constrained by extreme negative
selection pressures (Figure S6-S8). It is noteworthy that a
small fraction of sites in all snake lineages (Caenophidia and
Henophidia) seem to have accumulated a greater proportion of
non-synonymous to synonymous mutations, although these

Table 1. Molecular evolution of Nerve Growth Factor (NGF).

  SLACa FELb RELc FUBARd Integrative MEMEe M8 M2a Clade
Elapidae           
 ω>1f 2 13 28 22 34  19 15  

 ω<1g 12 20 11 18 22 21 (14+5) (13+2) 2.38

 ω= 0.90 - 1.93 - -  0.95 0.94  

Viperidae           
 ω>1f 0 0 2 0 8  0 0  

 ω<1g 3 13 0 7 13 6 - - 1.03

 ω= 0.65 - 0.88 - -  0.77 0.77  

NFF           
 ω>1f 0 1 3 2 5  0 0  

 ω<1g 1 2 0 3 3 2 - - 0.57

 ω= 0.59 - 0.67 - -  0.58 0.58  

Henophidia           
 ω>1f 0 0 0 0 1  0 0  

 ω<1g 3 12 1 13 13 1 - - 0.0001

 ω= 0.30 - 0.43 - -  0.30 0.30  

Iguania           
 ω>1f 0 0 0 0 4  0 0  

 ω<1g 35 55 73 83 87 4 - - 0.20

 ω= 0.26 - 0.76 - -  0.25 0.29  

Anguimorpha           
 ω>1f 0 0 0 0 1  0 0  

 ω<1g 4 13 0 15 15 1 - - 0.20

 ω= 0.33 - 0.48 - -  0.33 0.36  

Gekkota           
 ω>1f 0 0 3 1 5  0 0  

 ω<1g 1 15 0 16 16 1 - - -

 ω= 0.24 - 0.34 - -  0.25 0.25  

Scinciformata           
 ω>1f 0 0 0 0 1  0 0  

 ω<1g 8 18 All 18 19 1 - - -

 ω= 0.22 - 0.26 - -  0.22 0.25  

Laterata           
 ω>1f 0 0 0 0 0  0 0  

 ω<1g 5 12 0 14 15 0 - - -

 ω= 0.26 - 0.36 - -  0.26 0.27  

Turtles           
 ω>1f 0 0 0 1 1  0 0  

 ω<1g 9 13 0 14 14 0 - - -

 ω= 0.33 - 0.38 - -  0.32 0.34  

Mammals           
 ω>1f 0 1 0 0 4  0 0  

 ω<1g 24 54 All 86 86 3 - - -

 ω= 0.21 - 0.22 - -  0.17 0.11  
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observations lacked significant statistical support (indicated by
the density and compactness of the circles). Branch-site REL
identified four, three and two branches (p<0.05), respectively in
elapid, viperid and ‘non-front-fanged’ advanced snake NGFs as
evolving under the influence of episodic diversifying selection.
This highlights the episodic nature of natural selection on the
evolution of advanced snake venom-specific nerve growth
factors (Figure S9). This test failed to identify positive
diversifying selection in other non-venomous reptilian or
mammalian NGF and any BDNF and NT-3 gene lineages,
including those of the advanced snakes.

Discussion

Distinct rates and trajectories of neurotrophin evolution
Evidence provided by various analyses (codeml site, branch,

branch-site and clade-specific models: M8, M2a, M3, M0, two-
ratio model, branch-site test A, clade model c; HyPhy: SLAC,
FEL, REL, MEME, FUBAR, integrative analyses, branch-site
REL; TreeSAAP: amino acid-level selection assessment and
the evolutionary fingerprint analysis) not only revealed the
strong influence of positive diversifying selection on Elapidae
venom NGF (and to a lesser extent on the venom NGF of other
advanced snake lineages, particularly the Viperidae NGF), but
also highlighted the role of purifying selection pressures in
shaping the molecular evolution of various non-venomous
reptilian and mammalian NGF lineages (Tables 1-3; Figures
1-5; Tables S1-S4; Figures 4 and 5; Figures S6-S9). The
accumulation of variation in advanced snake NGFs, in a
fashion similar to other venom proteins [5,7,8] is suggestive of
a role in envenomation and prey-capture. As envenomation is
their primary method of prey subjugation, elapid and viperid
snakes rely on the swift and potent action of venom for
foraging. Hence, most elapid and viperid venom components
experience extreme selection pressures, likely as a result of a
co-evolutionary arms race with their prey [5,7]. Although NGF
constitutes a very small proportion (1-5 mg/g of venom) of the
total venom in most snakes [29,41–43], the venom of snakes of

the genus Oxyuranus (Taipans) has been shown to contain
larger quantities of NGF [44–46]. NGF seems to make up
nearly 0.5% (w/w) of the total venom injected by these snakes
[44–46]. Thus, NGF could be secreted in elevated amounts by
several species of caenophidian snakes, which could be
enough to cause toxicity in the prey. ‘Non-front-fanged’
advanced snakes have been shown to possess several rapidly
evolving venom components that participate in prey
envenoming [47–52]. Selection analyses in the present study
identify several residues and branches in both the ‘non-front-
fanged’ and viperid advanced snake NGF lineages as evolving
under positive Darwinian selection (Table 1: integrative
approach; Table S4: branch-site and clade models; Figure S6,
S9b and S9c). However, due to the scarcity of NGF sequences
from both these lineages, the extent to which NGF participates
in their envenoming remains elusive.

The aforementioned analyses also demonstrated the
influence of negative selection on the evolution of all reptilian
and mammalian BDNF and NT-3 gene lineages examined in
this study. The lack of variation in these genes despite their
origin over 300 million years ago is probably due to their
significance in neuronal development, maintenance and
survival. NGF, BDNF and NT-3 deficiencies have been
correlated with severe peripheral neuropathy and death of the
organism [53].

Focal mutagenesis of venom nerve growth factors
The synthesis and secretion of venom proteins is an

energetically expensive process [54–56]. Hence, mutations that
disrupt the structure/function of proteins are filtered out of the
population by negative selection pressures, favouring the
conservation of catalytic and structurally important core
residues. As a result, most mutations in proteins can be found
concentrated in structurally and/or functionally unimportant
regions. Moreover, the accumulation of point mutations under
the influence of positive Darwinian selection in certain regions
of the toxin, such as the molecular surface (a phenomenon we
refer to as focal mutagenesis), may confer adaptive

Table 1 (continued).

a: Single Likelihood Ancestor Counting

b: Fixed-effects likelihood

c: Random-effects likelihood

d: Fast, Unconstrained Bayesian AppRoximation

Integrative: Sites detected in common by SLAC, FEL, REL, FUBAR and MEME

e: Sites detected as experiencing episodic diversifying selection (0.05 significance) by the Mixed Effects Model Evolution (MEME)M8: Positively-selected sites detected

using the Bayes Empirical Bayes approach implemented in M8. Sites detected at 0.99 and 0.95 significance are indicated in the parenthesisM2a: Positively-selected sites

detected using the Bayes Empirical Bayes approach implemented in M2a. Sites detected at 0.99 and 0.95 significance are indicated in the parenthesisClade: Omega
computed by the clade model

f: Number of positively selected sites at 0.05 significance (for SLAC, FEL) or 50 Bayes factor (for REL) / number of sites under pervasive diversifying selection at the
posterior probability ≥0.9 (FUBAR)

g: Number of negatively selected sites at 0.05 significance (for SLAC, FEL) or 50 Bayes factor (for REL) / number of sites under pervasive purifying selection at the posterior
probability ≥0.9 (FUBAR)

ω: mean dN/dSNFF: “non-front-fanged” advanced snakes
doi: 10.1371/journal.pone.0081827.t001
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significance. We and others have postulated that predatory
venom components undergo focal mutagenesis that results in
the generation of a diversity of novel amino acids (and their
side-chains) on the molecular surface, which could non-
specifically interact with prey cells and cause a myriad of
pharmacological effects [11,52,57–61]. Mapping of
hypermutable sites onto the three-dimensional homology
model of elapid NGFs and the calculation of accessible surface

area (ASA) ratio for each residue indicated that 92% of the
positively selected residues in these proteins are located on the
molecular surface (Table 4; remaining sites couldn’t be
conclusively assigned to exposed/buried class). Moreover, a
large proportion of these positively selected sites (74%) were
found concentrated in the β-chain of Elapidae NGF, which is
the only secreted region of the mature toxin and hence the only
region that is likely to experience a coevolutionary arms race

Table 2. Molecular evolution of Brain-derived Neurotrophic Factors (BDNF).

  SLACa FELb RELc FUBARd Integrative MEMEe M8 M2a
Elapidae          
 ω>1f 0 0 0 0 0  0 0

 ω<1g 1 3 0 3 3 0 - -

 ω= 0.09 - 0.25 - -  0.09 0.09

Viperidae          
 ω>1f 0 0 0 0 0  0 0

 ω<1g 1 3 13 4 13 0 - -

 ω= 0.10 - - - -  0.11 0.11

NFF          
 ω>1f 0 0 0 0 0  0 0

 ω<1g 5 19 14 22 22 0 - -

 ω= 0.08 - 0.35 - -  0.06 0.06

Typhlopoidea          
 ω>1f 0 0 0 0 0  0 0

 ω<1g 27 47 0 93 93 0 - -

 ω= 0.07 - 0.11 - -  0.07 0.07

Boidae          
 ω>1f 0 0 1 1 1  0 0

 ω<1g 3 10 3 10 10 0 - -

 ω= 0.0 - 0.28 - -  0.09 0.09

Pythonidae          
 ω>1f 0 0 0 1 1  0 0

 ω<1g 0 2 11 7 11 0 - -

 ω= 0.21 - 0.23 - -  0.15 0.15

Iguania          
 ω>1f 0 0 0 0 0  0 0

 ω<1g 24 56 111 99 24 1 - -

 ω= 0.05 - - - 0.05  0.05 0.05

Anguimorpha          
 ω>1f 0 0 2 0 0  0 0

 ω<1g 9 22 9 23 9 0 - -

 ω= 0.08 - 0.15 - 0.08  0.06 0.06

Crocodiles          
 ω>1f 0 0 0 0 0  0 0

 ω<1g 0 8 20 1 0 0 - -

 ω= 0.09 - - - 0.09  0.12 0.12

Turtles          
 ω>1f 0 0 4 0 5  0 0

 ω<1g 6 18 2 18 18 1 - -

 ω= 0.10 - 0.14 - -  0.05 0.06

Mammals          
 ω>1f 0 0 2 0 4  0 0

 ω<1g 48 72 51 113 72 2 - -

 ω= 0.05 -  - -  0.05 0.06
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(Figure S5). Thus, it is highly likely that elapid NGFs follow the
regime of focal mutagenesis and favour the accumulation of
hypermutable sites in specific regions of the secreted toxin that
are able to influence the fitness of the animal. Rapidly evolving
caenophidian NGFs with a diversity of amino acids on their
molecular surface could not only induce a plethora of
pharmacological effects by non-specifically interacting with
novel receptors of the prey, but could further aid in evading the
prey immune response [62].

Putative role of nerve growth factors in venom
Nerve growth factors are known to inhibit venom

metalloproteinase-dependent proteolysis [63]. Hence, the
presence of large amounts of NGF, relative to
metalloproteinases in viper venom [64,65] has been viewed as
an indication of their role in prevention of venom autolysis [63].
However, additional plausible mechanisms of action exist for
both the direct and indirect participation of rapidly evolving
caenophidian NGF in prey envenoming, potentially resulting in
an increase in the potency of the toxicoferan venom arsenal.
The injection of large amounts of NGF into the lymphatic
system of prey would result in NGF overdose, triggering a
variety of reactions. Nerve growth factors are also known to
cause apoptosis of cells lacking the expression of TrkA
receptors [66–68] and thus the caenophidian venom NGFs
could act as cytotoxic proapoptotic factors, after being
introduced into tissues where they are not typically found.
Venom components like hyaluronidase have been shown to
degrade hyaluronic acid in the extra-cellular matrix and function
as spreading factors, facilitating the easier diffusion of other
venom components [69]. NGF, which is known to trigger the
release of granules containing histamines, serotonins and other
chemical mediators from mastocytes [70,71], could perform a
similar ancillary venom function by facilitating the efficient
absorption of other venom components. The degranulation of
mast cells that are located primarily in perivascular spaces,
often close to neurons and blood vessels, has been correlated

with increased vascular permeability and even neurogenic
inflammations [72]. While controlled degranulation aids in
orchestrating and mounting acute inflammatory reactions,
massive releases can be associated with anaphylaxis,
bronchoconstriction (suffocation) and vasodilation [73]. Over
the years, both glycosylated and non-glycosylated forms of
NGFs have been reported from snake venoms [44,74–76].
Glycosylation has been proposed to prolong the circulation
time of serum proteins by increasing their stability [77].
Interestingly, Asn 23, which has been postulated as a putative
glycosylation site in mature venom NGF [78,79], is highly
conserved in the entire squamate lineage (except in a few
elapid snakes: genus Naja, Notechis scutatus, Pseudechis
australis, Pseudechis porphyriacus, etc.), while being
completely absent from mammalian and turtle NGFs (Figure
S5). These observations are not surprising since mammalian
NGFs are not known to undergo glycosylation. Snake venom
NGFs could undergo posttranslational glycosylation in order to
circulate longer in the bloodstream of the prey and spread
further throughout the prey animal’s system. Thus,
caenophidian NGFs could directly and/or indirectly participate
in prey-envenoming through a number of plausible
mechanisms.

Putative duplication of nerve growth factors in Elapidae
Genes encoding venom proteins are known to evolve via the

birth-and-death model of evolution where new genes are
created by repeated duplication events, and are subsequently
either maintained in the genome, deleted or become non-
functional pseudogenes [7,8]. The molecular phylogeny of
NGFs clearly indicates the presence of two independent NGF
genes in Naja sputatrix, with very strong support for the node
separating them (915 bootstrap and 1.0 Bayesian posterior
probability: Figure 1). The phylogenetic placement of these two
gene homologues suggests that the gene duplication event
responsible for their origin occurred in an early elapid ancestor
(Figure 1) – we might therefore expect to find additional copies

Table 2 (continued).

a: Single Likelihood Ancestor Counting

b: Fixed-effects likelihood

c: Random-effects likelihood

d: Fast, Unconstrained Bayesian AppRoximation

Integrative: Sites detected in common by SLAC, FEL, REL, FUBAR and MEME

e: Sites detected as experiencing episodic diversifying selection (0.05 significance) by the Mixed Effects Model Evolution (MEME)

M8: Positively-selected sites detected using the Bayes Empirical Bayes approach implemented in M8. Sites detected at 0.99 and 0.95 significance are indicated in the
parenthesis

M2a: Positively-selected sites detected using the Bayes Empirical Bayes approach implemented in M2a. Sites detected at 0.99 and 0.95 significance are indicated in the
parenthesis

f: Number of positively selected sites at 0.05 significance (for SLAC, FEL) or 50 Bayes factor (for REL) / number of sites under pervasive diversifying selection at the
posterior probability ≥0.9 (FUBAR)

g: Number of negatively selected sites at 0.05 significance (for SLAC, FEL) or 50 Bayes factor (for REL) / number of sites under pervasive purifying selection at the posterior
probability ≥0.9 (FUBAR)

ω: mean dN/dSNFF: “non-front-fanged” advanced snakes
doi: 10.1371/journal.pone.0081827.t002
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of NGF in other elapid snakes in the future. Although one might
initially assume that the original copy of NGF would continue
the ancestral role in homeostasis, thereby releasing the novel
duplicate gene to evolve a function specific to venom, in N.
sputatrix both NGF genes were found to be expressed in the
venom gland [80]. However, considering how important NGF
and other neurotrophins appear to be for the survival of an
organism [53], it is highly unlikely that both gene copies would

be exclusively associated with a role in prey envenoming. We
therefore propose that co-expression of an NGF gene occurs in
different tissue types, similar to that recently proposed for other
toxin families [81]. Specifically, we postulate that despite the
elevated mutation rate in the Elapidae NGF, the ancestral copy
of the gene has retained its biochemical functions by
undergoing focal mutagenesis and continues to ensure
homeostasis. A greater accumulation of mutations on the

Table 3. Molecular evolution of of Neurotrophin 3 (NT-3).

  SLACa FELb RELc FUBARd Integrative MEMEe M8 M2a
Elapidae          
 ω>1f 0 0 0 0 0  0 0

 ω<1g 1 4 0 4 4 0 - -

 ω= 0.19 - 0.21 - -  0.18 0.19

Viperidae          
 ω>1f 0 0 0 0 0  0 0

 ω<1g 0 5 0 3 5 0 - -

 ω= 0.30 - 0.49 - -  0.28 0.30

NFF          
 ω>1f 0 2 5 1 8  0 0

 ω<1g 43 61 79 82 95 2 - -

 ω= 0.22 - 0.35 - -  0.20 0.27

Typhlopoidea          
 ω>1f 1 2 8 2 10  0 0

 ω<1g 48 69 49 106 106 2 - -

 ω= 0.24 - 0.49 - -  0.23 0.26

Boidae          
 ω>1f 0 0 0 1 3  0 0

 ω<1g 7 23 10 26 26 2 - -

 ω= 0.24 - 0.51 - -  0.24 0.28

Scinciformata          
 ω>1f 0 0 0 0 0  0 0

 ω<1g 7 27 75 30 75 0 - -

 ω= 0.13 - - - -  0.12 0.13

Iguania          
 ω>1f 0 2 4 3 7  0 0

 ω<1g 27 41 23 58 58 3 - -

 ω= 0.25 - 0.43 - -  0.23 0.26

Anguimorpha          
 ω>1f 0 0 0 0 1  0 0

 ω<1g 7 20 All 23 23 1 - -

 ω= 0.24 - 0.32 - -  0.21 0.24

Crocodiles          
 ω>1f 0 0 0 0 0  0 0

 ω<1g 0 1 all 1 1 0 - -

 ω= 0.08 - 0.08 - -  0.07 0.07

Turtles          
 ω>1f 0 0 0 0 0  0 0

 ω<1g 3 4 all 5 5 0 - -

 ω= 0.19 - 0.21 - -  0.17 0.17

Mammals          
 ω>1f 0 0 1 0 2  0 0

 ω<1g 77 124 134 167 172 1 - -

 ω= 0.06 -  - -  0.05 0.07
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Table 3 (continued).

a: Single Likelihood Ancestor Counting

b: Fixed-effects likelihood

c: Random-effects likelihood

d: Fast, Unconstrained Bayesian AppRoximation

Integrative: Sites detected in common by SLAC, FEL, REL, FUBAR and MEME

e: Sites detected as experiencing episodic diversifying selection (0.05 significance) by the Mixed Effects Model Evolution (MEME)

M8: Positively-selected sites detected using the Bayes Empirical Bayes approach implemented in M8. Sites detected at 0.99 and 0.95 significance are indicated in the
parenthesis

M2a: Positively-selected sites detected using the Bayes Empirical Bayes approach implemented in M2a. Sites detected at 0.99 and 0.95 significance are indicated in the
parenthesis

f: Number of positively selected sites at 0.05 significance (for SLAC, FEL) or 50 Bayes factor (for REL) / number of sites under pervasive diversifying selection at the
posterior probability ≥0.9 (FUBAR)

g: Number of negatively selected sites at 0.05 significance (for SLAC, FEL) or 50 Bayes factor (for REL) / number of sites under pervasive purifying selection at the posterior
probability ≥0.9 (FUBAR)

ω: mean dN/dSNFF: “non-front-fanged” advanced snakes
doi: 10.1371/journal.pone.0081827.t003

Figure 4.  Molecular evolution of nerve growth factors.  Three-dimensional homology models of nerve growth factors, depicting
the locations of positively selected sites (in red). The ω values (Model 8) for the respective taxa along with the number of positively
selected sites (PP ≥ 0.95, Bayes-Empirical Bayes approach) are indicated.
doi: 10.1371/journal.pone.0081827.g004

Molecular Evolution of Vertebrate Neurotrophins

PLOS ONE | www.plosone.org 11 November 2013 | Volume 8 | Issue 11 | e81827



molecular surface and the loops of the protein ensures the
preservation of structurally and functionally important core
residues. Clearly, a large number of residues across the entire
vertebrate NGF lineage appear to be highly conserved (Figure
S5). Moreover, it has been demonstrated on numerous
occasions that snake venom NGFs exhibit biological activities
similar to their mammalian counterparts [44,74]. This would
seemingly free the duplicate elapid NGF gene to participate
exclusively in prey envenoming. In contrast to the Elapidae
NGF, only one copy was found in the venom glands of the
Anguimorpha lizard Abronia graminea, which was identical to
the one recovered from genomic sequencing for use in
taxonomy studies [27]. Moreover, despite extensive BLAST
searches using sequence templates from a wide array of
mammalian and reptilian NGFs against the genomes of Anolis
carolinensis (Iguania) and Python molurus (Henophidia), we
were only able to retrieve a single copy of the NGF gene.
Hence, we further speculate that the ancestral NGF gene is co-

expressed in physiological tissues and the venom-gland, while
the new gene duplicates are more likely to be tissue-
specifically expressed in the venom gland alone. Experimental
investigation in the future regarding the copy number of NGF
should reveal if the NGF duplication occurred in an early elapid
ancestral lineage or at the base of the Toxicofera phylogenetic
tree.

Note on the usage of NGF in the phylogenetic
reconstructions of Toxicofera reptiles

NGF is a commonly used gene in reptilian phylogenetic
studies [82–85]. However, the detection of gene duplication
events and the accelerated evolution of the advanced snake
NGFs indicate that these genes should not be employed in
phylogenetic inferences of Toxicofera reptiles, as these factors
can undermine such analyses [86].

Figure 5.  Molecular evolution of brain-derived neurotrophic factors.  Three-dimensional homology models of brain-derived
neurotrophic factors (BDNF), depicting the molecular evolution of these non-venomous homologues. The ω values (Model 8) for the
respective taxa (PP ≥ 0.95, Bayes-Empirical Bayes approach) are indicated.
doi: 10.1371/journal.pone.0081827.g005
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Table 4. Nucleotide and complementary protein-level selection assessment of Elapidae Nerve Growth Factors (NGF).

Codon Amino Aacid M2aa M8b Propertyc Magnituded ASA
57 R 4.241±0.515 3.894±0.510 - - -
  (0.994) (0.998)*    
72 A 4.260±0.453 3.899±0.493 - - -
  (0.999)** (1.0)**    

116 T 4.227±0.553 3.892±0.513 Rα, αm 6, 7 -
  (0.990)* (0.997)**    

123 A 4.243±0.509 3.895±0.506 Rα, αm 6, 7 -
  (0.994) ( 0.998)*    
125 R 4.132±0.769 3.857±0.601 - - -
  (0.961)* (0.986)*    

127 N 4.262±0.448 3.900±0.492 Rα, αm 6, 7 -
  (1.0)** (1.0)**    

133 Q 4.262±0.446 3.900±0.491 Rα, αm 6, 7 -
  (1.0)** (1.0)**    

144 D 4.258±0.459 3.899±0.495 Rα, αm 6, 7 69.5
  (0.999)** (1.0)**   Exposed
150 T 4.252±0.481 3.897±0.500 αm 6 77.5
  (0.997)** (0.999)**   Exposed
155 R 4.146±0.740 3.867±0.576 αm 6 87.0
  (0.965)* (0.990)*   Exposed
158 V 4.247±0.498 3.896±0.504 - - 76.9
  (0.995)** (0.999)**   Exposed
163 E 4.257±0.464 3.898±0.496 αm 6 65.9
  (0.998)* (0.999)**   Exposed
167 L 4.024±0.940 3.824±0.670 αm 6 65.0
  (0.929) (0.976)*   Exposed
170 E 4.260±0.453 3.900±0.493 - - 73.0
  (0.999)** (1.0)**   Exposed
182 R 3.951±1.036 3.789±0.736 - - 57.3
  (0.907) (0.965)*   Exposed

207 Q 4.255±0.471 3.898±0.499 Rα 6 32.2
  (0.998)** 0.999**   NA
211 R 4.260±0.455 3.899±0.493 Rα 6 53.1
  (0.999)* (1.0)**   Exposed
219 Q 4.262±0.446 3.900±0.491 Rα 6 73.8
  (1.0)** (1.0)**   Exposed
240 D 4.004±0.970 3.804±0.712 Rα 6 66.9
  (0.923) (0.969)*   Exposed
167 L 4.024±0.940 3.824±0.670 αm 6 65.0
  (0.929) (0.976)*   Exposed
170 E 4.260±0.453 3.900±0.493 - - 73.0
  (0.999)** (1.0)**   Exposed
182 R 3.951±1.036 3.789±0.736 - - 57.3
  (0.907) (0.965)*   Exposed

207 Q 4.255±0.471 3.898±0.499 Rα 6 32.2
  (0.998)** 0.999**   NA
211 R 4.260±0.455 3.899±0.493 Rα 6 53.1
  (0.999)* (1.0)**   Exposed
219 Q 4.262±0.446 3.900±0.491 Rα 6 73.8
  (1.0)** (1.0)**   Exposed
240 D 4.004±0.970 3.804±0.712 Rα 6 66.9
  (0.923) (0.969)*   Exposed
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Conclusions

In this study, we show that BDNF and NT-3, two major
members of the neurotrophin family, lack variations completely
and evolve under the regime of negative selection, indicating
their extreme importance in the maintenance of homeostasis.
In complete contrast, this study points for the first time towards
venom-specific NGF evolving in a manner typical of toxic
proteins and consequently suggests a hitherto unappreciated
role in envenomation. We highlight an exquisite mechanism of
venom evolution where focal mutagenesis has facilitated the
transformation of a key regulatory protein into a toxin, without
hampering its participation in homeostasis. Structure-function
studies of mutant NGF may reveal a suite of novel activities,
some of which may be of use in drug design and development.

Materials and Methods

Phylogenetic Analyses
Phylogenetic analyses were performed to allow the

reconstruction of the molecular evolutionary history of
vertebrate NGF, BDNF and NT-3 genes. Nucleotide sequences
were downloaded from the National Center for Biotechnology
Information database (NCBI: http://www.ncbi.nlm.nih.gov/) and
a dataset of 1183 sequences (NGF: 308; BDNF: 434; NT-3:
441) was compiled. Accession numbers of all sequences
analysed in this study are available in Tables S5.1-S5.3.
Unpublished sequences are available in the File S1. Resultant
sequence sets were aligned using MUSCLE [87]. The
phylogenetic relationships were determined using Bayesian
and maximum-likelihood approaches. MrBayes version 3.2 [88]
was used for Bayesian inference. Tree searches were run
using four Markov chains for a minimum of 10 million
generations, sampling every 100th tree. The log likelihood
score of each saved tree was plotted against the number of
generations to establish the point at which the log-likelihood
scores of the analyses reached their asymptote. 25% of the
total trees sampled were conservatively discarded as burnin.
The posterior probabilities for clades were established by
constructing a majority rule consensus tree for all trees
generated after the completion of the burnin. The analyses
were repeated three times to make sure that the trees

generated were not clustered around local optima. An optimal
maximum likelihood phylogenetic tree was obtained using
PhyML 3.0 [89] and node support was evaluated with 1,000
bootstrapping replicates.

Test for Recombination
To overcome the effects of recombination on the

phylogenetic and evolutionary interpretations [90], we
employed Single Breakpoint algorithm implemented in the
HyPhy package and assessed recombination on all the toxin
forms examined in this study [91,92]. When potential
breakpoints were detected using the small sample Akaike
information Criterion (AICc), the sequences were
compartmentalized before conducting selection analyses, so as
to allow recombining units to have distinct phylogeny.

Selection Analyses
We evaluated the influence of natural selection on various

members of vertebrate neurotrophins using maximum-
likelihood models [93,94] implemented in CODEML of the
PAML [95]. In order to detect evolutionary selection pressures
acting upon individual lineages, we employed the two-ratio
model as well as the optimized branch-site test [96,97]. The
two-ratio model evaluates selection across the lineages alone,
while the branch-site model allows ω to vary across the sites of
the protein and along the branches in the tree. The latter is
known for its reasonable power and accuracy to detect short
bursts of episodic adaptations [97]. However, both the two-ratio
and branch-site models require the foreground (lineages under
positive selection) and background lineages (lineages lacking
positive selection) to be defined a priori. Such predefined
biological hypotheses are often unavailable and it becomes
difficult to define the foreground lineages. Therefore, we
treated each clade being compared as foreground branches
alternatively and tested multiple hypotheses. A likelihood-ratio
test was then conducted by comparing the model that allows ω
to be greater than 1 in the foreground branch, with a null model
that does not (ω constrained 1). It has been suggested that
while implementing multiple hypotheses using branch and
branch-site models, it is necessary to control the family-wise
error rate (FWER or Type I error) [97]. We used Bonferroni
correction to account for such errors. It uses α/n as the

Table 4 (continued).

Amino-acid property symbols used: Power to be in the middle of α-helix (αm), Solvent accessible reduction ratio (Rα)
PAML

a, b: Bayes Empirical Bayes (BEB) posterior probability and post-mean omega (indicated in brackets) for the sites detected as positively selected by the site models M2a
and M8, respectively. Sites detected as positively selected at 0.95 and 0.99 posterior probability by the Bayes Empirical Bayes approach of M8 are represented by * and **,
respectively.
TreeSAAP

c: amino acid property experiencing positive diversifying selection

d: magnitude of selection on the amino acid property

ASA: Accessible surface area.
Note: Codon sites with significant support from both nucleotide and protein-level selection analyses are highlighted in bold.
doi: 10.1371/journal.pone.0081827.t004
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significance level to test each hypothesis; where ‘α’ is the
significance level and ‘n’ is the number of independent true null
hypotheses. We further utilized branch-site REL implemented
in HyPhy to identify lineages affected by positive selection
pressures. Unlike the aforementioned lineage-specific models,
branch-site REL does not require the identification of
foreground and background branches a priori.

Because lineage-specific models either assume a single ω
for the entire tree or assess the effects of selection only along
the branches, they often fail to identify regions in proteins that
might be affected by episodic selection pressures and
ultimately underestimate the strength of selection. Hence, we
employed site-specific models which estimate positive
selection statistically as a non-synonymous-to-synonymous
nucleotide-substitution rate ratio (ω) significantly greater than
1. We compared likelihood values for three pairs of models with
different assumed ω distributions as no a priori expectation
exists for the same: M0 (constant ω rates across all sites)
versus M3 (allows the ω to vary across sites within ‘n’ discrete
categories, n ≥ 3); M1a (a model of neutral evolution) where all
sites are assumed to be either under negative (ω < 1) or
neutral selection (ω = 1) versus M2a (a model of positive
selection) which in addition to the site classes mentioned for
M1a, assumes a third category of sites; sites with ω >1
(positive selection) and M7 (β) versus M8 (β and ω), and
models that mirror the evolutionary constraints of M1 and M2
but assume that ω values are drawn from a β distribution [98].
Only if the alternative models (M3, M2a and M8: allow sites
with ω >1) show a better fit in Likelihood Ratio Test (LRT)
relative to their null models (M0, M1a and M7: do not allow
sites ω >1), are their results considered significant. LRT is
estimated as twice the difference in maximum likelihood values
between nested models and compared with the χ2 distribution
with the appropriate degree of freedom (i.e., the difference in
the number of parameters between the two models). The
Bayes empirical Bayes (BEB) approach [97] was used to
identify amino acids under positive selection by calculating the
posterior probabilities that a particular amino acid belongs to a
given selection class (neutral, conserved or highly variable).
Sites with greater posterior probability (PP ≥ 95%) of belonging
to the ‘ω > 1 class’ were inferred to be positively selected.

SLAC, FEL, REL and FUBAR [99,100] implemented in
HyPhy [101] were employed to provide additional support to
the aforementioned analyses and to detect sites evolving under
the influence of positive and negative selection. MEME [102]
was also used to detect episodic diversifying selection. Further
support for the results of the nucleotide-level selection
analyses was obtained and the radicalness of mutations were
assessed using a complementary protein-level approach
implemented in TreeSAAP [103].

Direct comparison of ω values computed from different
datasets can be misleading, as they can have different
proportion of sites under selection. Hence, we assessed the
selection pressures shaping the evolution of NGF along various
toxicoferan reptilian lineages by employing clade model
analyses implemented in codeml and simultaneously estimated
ω values [104]. The significance of the analysis was tested by
comparing the likelihood of this model with that of model M1a.

To clearly depict the proportion of sites under different regimes
of selection, an evolutionary fingerprint analysis was carried out
using the evolutionary selection distance (ESD) algorithm
implemented in datamonkey [91,105,106]. Evolutionary
fingerprint analysis fits a versatile general discrete bivariate
model of site-to-site variation in selection pressures and
comprises a description of the number of selective classes, the
dN/dS (ω) ratio for each class and the assignment of sites to
classes [91,106].

Structural Analyses
To depict the natural selection pressures influencing the

evolution of various neurotrophins, we mapped the sites under
positive selection on the homology models created using Phyre
2 webserver [107]. Pymol 1.3 [108] was used to visualize and
generate the images of homology models. The consurf
webserver [109] was used for mapping the evolutionary
selection pressures on the three-dimensional homology
models. GETAREA [110] was used to calculate the ASA ratio
or the solvent exposure of amino-acid side chains. It uses the
atom co-ordinates of the PDB file and indicates if a residue is
buried or exposed to the surrounding medium by comparing
the ratio between side-chain ASA and the “random coil” values
per residue. An amino-acid is considered to be buried if ASA is
less than 20% and exposed if ASA is ≥ 50%.

Supporting Information

Table S1.  (S1.1 – S1.11) Details of selection analyses of
nerve growth factors (NGF). a: dn/ds (weighted average). b:
Significance of the model in comparison with the null model. c:
Number of sites with ω > 1 under the Bayes empirical Bayes
approach with a posterior probability (PP) more than or equal
to 0.99 and 0.95. * Models which allow ω > 1.
(PDF)

Table S2.  (S2.1 – S2.11) Details of selection analyses of
brain-derived neurotrophic factors (BDNF). a: dn/ds
(weighted average). b: Significance of the model in comparison
with the null model. c: Number of sites with ω > 1 under the
Bayes empirical Bayes approach with a posterior probability
(PP) more than or equal to 0.99 and 0.95. * Models which allow
ω > 1.
(PDF)

Table S3.  (S3.1-S3.11) Details of selection analyses of
neurotrophin-3 (NT3). a: dn/ds (weighted average). b:
Significance of the model in comparison with the null model. c:
Number of sites with ω > 1 under the Bayes empirical Bayes
approach with a posterior probability (PP) more than or equal
to 0.99 and 0.95. * Models which allow ω > 1.
(PDF)

Table S4.  Lineage-specific selection analyses of nerve
growth factors (NGF). a: dn/ds (weighted average). b:
Significance of the model in comparison with the null model. *
Significant after Bonferroni correction. NS: Not significant.
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Significantly detected positively selected lineages are
highlighted in bold.
(PDF)

Table S5.  (S5.1-S5.3) Sequences analysed.
(PDF)

Figure S1.  Maximum-likelihood molecular phylogeny of
nerve growth factors (NGF). Branches with bootstrap support
of less than 850 (out of 1000 bootstrap replicates) are
highlighted in grey. [NFF: “non-front-fanged” advanced snakes;
Atr: Atractaspidinae ; Sci: Scinciformata].
(PDF)

Figure S2.  Maximum-likelihood molecular phylogeny of
brain-derived neurotrophic factors (BDNF). Branches with
bootstrap support of less than 850 (out of 1000 bootstrap
replicates) are highlighted in grey.
(PDF)

Figure S3.  Maximum-likelihood molecular phylogeny of
neurotrophin-3 (NT3). Branches with bootstrap support of less
than 850 (out of 1000 bootstrap replicates) are highlighted in
grey.
(PDF)

Figure S4.  Maximum-likelihood phylogeny of
neurotrophins. Branches with bootstrap support of less than
850 (out of 1000 bootstrap replicates) are highlighted in grey.
[NFF: ‘non-front-fanged’ advanced snakes; Pyt: Pythonidae;
Mam: Mammals].
(PDF)

Figure S5.  Alignment of vertebrate nerve growth factors.
(PDF)

Figure S6.  Evolutionary fingerprint of nerve growth
factors (NGF). Estimates of the distribution of synonymous (a)
and non-synonymous (b) substitution ratesinferred for various
reptilian and mammalian nerve growth factor (NGF) lineages
are shown here. The ellipses reflect a Gaussian-approximated
variance in each individual rate estimate, and coloured pixels
show the density of the posterior sample of the distribution for a
given rate. The diagonal line represents the idealized neutral
evolution regime (ω = 1), points above and below the line
correspond to positive selection (ω>1) and negative selection
(ω<1), respectively. Site model 8 omega (w) along with the
total number of positively selected sites detected by its Bayes
Empirical Bayes (BEB) approach are also indicated below.
(PDF)

Figure S7.  Evolutionary fingerprint of brain-derived
neurotrophic factors (BDNF). Estimates of the distribution of

synonymous (a) and non-synonymous (b) substitution rates
inferred for various reptilian and mammalian brain-derived
neurotrophic factor (BDNF) lineages are shown here. The
ellipses reflect a Gaussian-approximated variance in each
individual rate estimate, and coloured pixels show the density
of the posterior sample of the distribution for a given rate. The
diagonal line represents the idealized neutral evolution regime
(ω = 1), points above and below the line correspond to positive
selection (ω>1) and negative selection (ω<1), respectively. Site
model 8 omega (w) along with the total number of positively
selected sites detected by its Bayes Empirical Bayes (BEB)
approach are also indicated below.
(PDF)

Figure S8.  Evolutionary fingerprint of neurotrophin-3
(NT3). Estimates of the distribution of synonymous (a) and
non-synonymous (b) substitution rates inferred for various
reptilian and mammalian neurotrophin-3 (NT-3) lineages are
shown here. The ellipses reflect a Gaussian-approximated
variance in each individual rate estimate, and coloured pixels
show the density of the posterior sample of the distribution for a
given rate. The diagonal line represents the idealized neutral
evolution regime (ω = 1), points above and below the line
correspond to positive selection (ω>1) and negative selection
(ω<1), respectively. Site model 8 omega (w) along with the
total number of positively selected sites detected by its Bayes
Empirical Bayes (BEB) approach is also indicated below.
(PDF)

Figure S9.  Branch-site REL: Caenophidian nerve growth
factors (NGF). The hue of each colour indicates strength of
selection, with primary red corresponding to ω > 5, primary
blue to ω = 0 and grey to ω=1. The width of each colour
component represents the proportion of sites in the
corresponding class. Thicker branches have been classified as
undergoing episodic diversifying selection (indicated by arrows)
by the sequential likelihood ratio test at corrected p ≤ 0.05.
(PDF)

File S1.  Unpublished sequences.
(DOCX)
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